
Mary Hall
July, 2011

Compiler-Based Autotuning Technology

Lecture 2: Tuning Code with CHiLL

* This work has been partially sponsored by DOE SciDAC as part of the Performance
Engineering Research Institute (PERI), DOE Office of Science, the National Science
Foundation, DARPA and Intel Corporation.

•  What is it like to tune code with CHiLL?
•  Working through a series of examples
•  No details on implementation and

internal abstractions until tomorrow
•  Higher-level abstractions in CUDA-

CHiLL on Thursday

CHiLL from a User’s Perspective

ACACES 2011, L2: Tuning code with CHiLL

Two Different Ways to Use CHiLL

Compiler Developer’s View

Library/Application
Developer’s View

ACACES 2011, L2: Tuning code with CHiLL

1.  Basics on loop nest transformations
2.  CHiLL basics

a.  Statements, loop level
b.  Set of transformations supported
c.  Additional annotations

3.  Script examples and results
4.  Optimizations for small matrix sizes
5.  Optimizations for larger matrix sizes

Outline for Today’s Lecture

ACACES 2011, L2: Tuning code with CHiLL

•  Focus is loop nest computations
–  Important to high-end application and library

developers
–  Source of data-parallel code

•  Mostly, loop nests in the affine domain
–  Array subscripts, loop bounds, control flow tests

are linear functions of loop indices
•  Generalization

–  Can mix non-affine constructs with care or user
intervention

–  May require approximation

1. Loop Transformation Basics: Applicability

ACACES 2011, L2: Tuning code with CHiLL

•  Safety
–  After transformation, will the resulting code be

“equivalent” to the original code?
•  Profitability

–  After transformation, is the resulting code likely to
be faster than the original code?

Key observation: With autotuning, we can afford to be
very aggressive in predicting profitability and catch
erroneous predictions through empirical data. This
makes it possible to achieve very high performance with
autotuning compilers.

1. Loop Transformation Basics: Criteria for
Applying Transformations

ACACES 2011, L2: Tuning code with CHiLL

1. Example: Matrix-Matrix Multiply

for(i=0; i<n; i++)
 for(j=0; j<n; j++)
 for(k=0; k<n; k++)
 c[i][j]+=a[i][k]*b[k][j];

ACACES 2011, L2: Tuning code with CHiLL

•  A script applies to a single loop nest in a specific
procedure in a source code file

•  Statements in the loop nest are numbered starting at
0 and are referred to by their number. Statements
created by transformations are given new numbers.

•  Loop level within the loop nest identifies the subloop
to which a transformation should be applied, coupled
with statement number. Outermost loop is at level 1.

2a. CHiLL Basics: Parameters in Scripts

Example CHiLL script
source: mxm.c
procedure: 0
loop: 0
permute([2,1,3])
unroll(0,3,2)

ACACES 2011, L2: Tuning code with CHiLL

Source code for mxm.c
loop level 1: for(i=0; i<n; i++)
loop level 2: for(j=0; j<n; j++)
loop level 3: for(k=0; k<n; k++)
statement 0: c[i][j]+=a[i][k]*b[k][j];

Transformation and Parameters Description
permute
([stmt],[level],order)

Permute optional [stmt] to optional loop [level] according to
order. Can omit [stmt] and [level] and entire loop nest is
permuted.

unroll
(stmt,level,unrollfactor)

Unroll loop at level for the subloop specified by stmt/level.
Unroll by unrollfactor.

tile
(stmt,level,ts,[outerlooplevel])

Tile loop at level for the subloop specified by stmt/level
and tile size ts. Place controlling loop at optional
[outerlooplevel] or defaults to outermost.

datacopy
(stmt,level,array,[index])

Calculate footprint for all references to array in subloop
specified by stmt/level and copy into temporary, replacing
original accesses with copy. Optional [index] refers to
fastest-changing dimension.

split(stmt,level,condition) Split iteration space at subloop specified by stmt/level
according to condition and its complement.

datacopy_privatized
(stmt,level,array,[index])

Similar to datacopy, but creates a private copy in parallel
thread code.

Other transformations include: fuse, distribute, skew, scale, reverse, shift, peel,
nonsingular

2b. CHiLL Basics: Set of Transformations

ACACES 2011, L2: Tuning code with CHiLL

•  Two annotations are used to describe
data properties
–  known(constraint): establishes additional

constraints not derived from source code (e.g., to
specialize for ranges of problem sizes)

–  remove_dep(stmt1,stmt2): eliminates dependences
across two statements to enable transformations

2c. CHiLL Basics: Annotations

ACACES 2011, L2: Tuning code with CHiLL

for (j=0; j<6; j++)
 for (i= 0; i<3; i++)

A[i][j+1]=A[i][j]+B[j];

for (i= 0; i<3; i++)
 for (j=0; j<6; j++)

A[i][j+1]=A[i][j]+B[j];

i

j

new traversal order! i

j

Permute the order of the loops to modify the traversal order

NOTE: C multi-dimensional arrays are stored in row-
major order, Fortran in column major

3. Transformations: Loop Permutation

ACACES 2011, L2: Tuning code with CHiLL

CHiLL script
source: mxm.c
procedure: 0
loop: 0
permute([2,1,3])

Source code for mxm.c
loop level 1: for(i=0; i<n; i++)
loop level 2: for(j=0; j<n; j++)
loop level 3: for(k=0; k<n; k++)
statement 0: c[i][j]+=a[i][k]*b[k][j];

3. Permute Loops to New Order

Resulting code:
for(j=0; j<n; j++)
 for(i=0; i<n; i++)
 for(k=0; k<n; k++)
 c[i][j]+=a[i][k]*b[k][j];

ACACES 2011, L2: Tuning code with CHiLL

•  Unroll simply replicates the statements in a loop, with
the number of copies called the unroll factor

•  As long as the copies don’t go past the iterations in
the original loop, it is always safe
–  May require “cleanup” code

•  Unroll-and-jam involves unrolling an outer loop and
fusing together the copies of the inner loop (not
always safe)

•  One of the most effective optimizations there is, but
there is a danger in unrolling too much

3. Transformations: Unroll, Unroll-and-Jam

ACACES 2011, L2: Tuning code with CHiLL

Original:
for (i=0; i<4; i++)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];

Unroll j
for (i=0; i<4; i++)
 for (j=0; j<8; j+=2)
 A[i][j] = B[j+1][i];
 A[i][j+1] = B[j+2][i];

Unroll-and-jam i
for (i= 0; i<4; i+=2)
 for (j=0; j<8; j++)
 A[i][j] = B[j+1][i];
 A[i+1][j] = B[j+1][i+1];

CHiLL script
source: mxm.c
procedure: 0
loop: 0
permute([2,1,3])
unroll(0,2,2)
unroll(0,3,2)

Source code for mxm.c
loop level 1: for(i=0; i<128; i++)
loop level 2: for(j=0; j<128; j++)
loop level 3: for(k=0; k<128; k++)
statement 0: c[i][j]+=a[i][k]*b[k][j];

3. Unroll loops at levels 2 and 3

Resulting code:
for(j=0; j<128; j++) {
 for(i=0; i<128; i+=2) {
 for(k=0; k<128; k+=2) {
 c[i][j]+=a[i][k]*b[k][j];
 c[i][j]+=a[i][k+1]*b[k+1][j];
 c[i+1][j]+=a[i+1][k]*b[k][j];
 c[i+1][j]+=a[i+1][k+1]*b[k+1][j];
 }
}

ACACES 2011, L2: Tuning code with CHiLL

CHiLL script
source: mxm.c
procedure: 0
loop: 0
known(n=10)
permute([2,1,3])
unroll(0,2,2)
unroll(0,3,2)

Source code for mxm.c
loop level 1: for(i=0; i<n; i++)
loop level 2: for(j=0; j<n; j++)
loop level 3: for(k=0; k<n; k++)
statement 0: c[i][j]+=a[i][k]*b[k][j];

3. Annotation to specialize for n=10

Resulting code:
for(j=0; j<10; j++)
 for(i=0; i<10; i+=2)
 for(k=0; k<10; k+=2) {
 c[i][j]+=a[i][k]*b[k][j];
 c[i][j]+=a[i][k+1]*b[k+1][j];
 c[i+1][j]+=a[i+1][k]*b[k][j];
 c[i+1][j]+=a[i+1][k+1]*b[k+1][j];
 }

ACACES 2011, L2: Tuning code with CHiLL

•  Previous example comes from optimizing nek5000
(Friday’s lecture)

•  Involves optimizing for small matrix sizes
–  Set of expected sizes known and similar for

different input data sets
•  Specialization and optimizations specific to small

matrices leads to very high performance

4. Optimizations for small matrix sizes

Example from nek5000
8 input sizes comprise 75%
of execution time

ACACES 2011, L2: Tuning code with CHiLL

63%

•  Optimization opportunities
–  exploit reuse in registers (unroll-and-jam)
–  exploit SIMD (in the Opteron SSE) (permute,

unroll)
–  reduce loop overheads (unroll, specialize)

ACACES 2011, L2: Tuning code with CHiLL

4. Optimizations for small matrix sizes

•  At the core of multimedia extensions
–  SIMD parallelism
–  Variable-sized data fields:
–  Vector length = register width / type size

Slide source: Jaewook Shin ACACES 2011, L2: Tuning code with CHiLL

4. Aside: Multimedia Extensions and How to
Optimize for Them

4. Aside: Multimedia Extensions, Scalar vs.
Multimedia Operations

Slide source: Jaewook Shin ACACES 2011, L2: Tuning code with CHiLL

sws refers to datatype for
instruction-level configurability

•  Data must be in adjacent memory locations
–  May need to copy to get adjacency (overhead)

•  Data must be aligned to superword boundary
–  Unaligned data may produce incorrect results on

older platforms
–  Alignment concerns lead to extra control

(dynamic alignment)
•  Control flow introduces complexity and inefficiency
•  Exceptions may be masked

4. Aside: Multimedia Extensions and How to
Optimize for Them

•  Optimization opportunities
–  exploit reuse in registers (unroll-and-jam)
–  exploit SIMD (in the Opteron SSE) (permute,

unroll)
–  reduce loop overheads (unroll, specialize)

ACACES 2011, L2: Tuning code with CHiLL

4. Optimizations for small matrix sizes

•  For this very simple example, we have several
parameters and variants
– What is the right loop order? (variant)
– Which loops to unroll? (treat no unrolling as
parameter)

– How much to unroll? (parameter)

ACACES 2011, L2: Tuning code with CHiLL

4. Optimization Parameters and Variants

•  Focus on loop orders that are best for SSE
code generation (3 out of 6):
–  {123, 213, 231}

•  Unrolling: Limit for I-cache
–  {Ui,Uj,Uk≤2197} (limit derived empirically)

•  Spatial locality for SIMD
–  {Ui=1 or Uj=1 or Uk=1}

•  Avoid unrolling cleanup loop to streamline
code:
–  {M mod Ui=0 and N mod Uj=0 and K mod Uk=0}

4. Heuristics to Prune Search Space

ACACES 2011, L2: Tuning code with CHiLL
Slide source: Jaewook Shin,
ICS ‘10

4. Code Variants and Parameters Selected by
Autotuning

Slide source: Jaewook Shin,
IWAPT ‘09 ACACES 2011, L2: Tuning code with CHiLL

(% of peak)

4. Impact of Using a Different Variant or
Parameters

Slide source: Jaewook Shin,
IWAPT ‘09 ACACES 2011, L2: Tuning code with CHiLL

Example: loop order ijk, unroll 8-4-1 (Fortran)
FUNCTION M_100_10_8 (A, B, C)

 INTEGER M_100_10_8, T4, T6
 DOUBLE PRECISION A, B, C

 DIMENSION A(8, 10)
 DIMENSION B(10, 100)
 DIMENSION C(8, 100)

 DO 2, T4 = 1, 97, 4
 C(1, T4) = 0.0000000000000000000D+00
 C(1 + 1, T4) = 0.0000000000000000000D+00
 C(1 + 2, T4) = 0.0000000000000000000D+00
 C(1 + 3, T4) = 0.0000000000000000000D+00
 C(1 + 4, T4) = 0.0000000000000000000D+00
 C(1 + 5, T4) = 0.0000000000000000000D+00
 C(1 + 6, T4) = 0.0000000000000000000D+00
 C(1 + 7, T4) = 0.0000000000000000000D+00
 C(1, T4 + 1) = 0.0000000000000000000D+00
 C(1 + 1, T4 + 1) = 0.0000000000000000000D+00
 C(1 + 2, T4 + 1) = 0.0000000000000000000D+00
 C(1 + 3, T4 + 1) = 0.0000000000000000000D+00
 C(1 + 4, T4 + 1) = 0.0000000000000000000D+00
 C(1 + 5, T4 + 1) = 0.0000000000000000000D+00
 C(1 + 6, T4 + 1) = 0.0000000000000000000D+00
 C(1 + 7, T4 + 1) = 0.0000000000000000000D+00
 C(1, T4 + 2) = 0.0000000000000000000D+00
 C(1 + 1, T4 + 2) = 0.0000000000000000000D+00
 C(1 + 2, T4 + 2) = 0.0000000000000000000D+00
 C(1 + 3, T4 + 2) = 0.0000000000000000000D+00
 C(1 + 4, T4 + 2) = 0.0000000000000000000D+00
 C(1 + 5, T4 + 2) = 0.0000000000000000000D+00
 C(1 + 6, T4 + 2) = 0.0000000000000000000D+00
 C(1 + 7, T4 + 2) = 0.0000000000000000000D+00
 C(1, T4 + 3) = 0.0000000000000000000D+00
 C(1 + 1, T4 + 3) = 0.0000000000000000000D+00
 C(1 + 2, T4 + 3) = 0.0000000000000000000D+00
 C(1 + 3, T4 + 3) = 0.0000000000000000000D+00
 C(1 + 4, T4 + 3) = 0.0000000000000000000D+00
 C(1 + 5, T4 + 3) = 0.0000000000000000000D+00
 C(1 + 6, T4 + 3) = 0.0000000000000000000D+00
 C(1 + 7, T4 + 3) = 0.0000000000000000000D+00

DO 4, T6 = 1, 10, 1
 C(1, T4) = C(1, T4) + A(1, T6) * B(T6, T4)
 C(1 + 1, T4) = C(1 + 1, T4) + A(1 + 1, T6) * B(T6, T4)
 C(1 + 2, T4) = C(1 + 2, T4) + A(1 + 2, T6) * B(T6, T4)
 C(1 + 3, T4) = C(1 + 3, T4) + A(1 + 3, T6) * B(T6, T4)
 C(1 + 4, T4) = C(1 + 4, T4) + A(1 + 4, T6) * B(T6, T4)
 C(1 + 5, T4) = C(1 + 5, T4) + A(1 + 5, T6) * B(T6, T4)
 C(1 + 6, T4) = C(1 + 6, T4) + A(1 + 6, T6) * B(T6, T4)
 C(1 + 7, T4) = C(1 + 7, T4) + A(1 + 7, T6) * B(T6, T4)
 C(1, T4 + 1) = C(1, T4 + 1) + A(1, T6) * B(T6, T4 + 1)
 C(1 + 1, T4 + 1) = C(1 + 1, T4 + 1) + A(1 + 1, T6) * B(T6, T4 + 1)
 C(1 + 2, T4 + 1) = C(1 + 2, T4 + 1) + A(1 + 2, T6) * B(T6, T4 + 1)
 C(1 + 3, T4 + 1) = C(1 + 3, T4 + 1) + A(1 + 3, T6) * B(T6, T4 + 1)
 C(1 + 4, T4 + 1) = C(1 + 4, T4 + 1) + A(1 + 4, T6) * B(T6, T4 + 1)
 C(1 + 5, T4 + 1) = C(1 + 5, T4 + 1) + A(1 + 5, T6) * B(T6, T4 + 1)
 C(1 + 6, T4 + 1) = C(1 + 6, T4 + 1) + A(1 + 6, T6) * B(T6, T4 + 1)
 C(1 + 7, T4 + 1) = C(1 + 7, T4 + 1) + A(1 + 7, T6) * B(T6, T4 + 1)
 C(1, T4 + 2) = C(1, T4 + 2) + A(1, T6) * B(T6, T4 + 2)
 C(1 + 1, T4 + 2) = C(1 + 1, T4 + 2) + A(1 + 1, T6) * B(T6, T4 + 2)
 C(1 + 2, T4 + 2) = C(1 + 2, T4 + 2) + A(1 + 2, T6) * B(T6, T4 + 2)
 C(1 + 3, T4 + 2) = C(1 + 3, T4 + 2) + A(1 + 3, T6) * B(T6, T4 + 2)
 C(1 + 4, T4 + 2) = C(1 + 4, T4 + 2) + A(1 + 4, T6) * B(T6, T4 + 2)
 C(1 + 5, T4 + 2) = C(1 + 5, T4 + 2) + A(1 + 5, T6) * B(T6, T4 + 2)
 C(1 + 6, T4 + 2) = C(1 + 6, T4 + 2) + A(1 + 6, T6) * B(T6, T4 + 2)
 C(1 + 7, T4 + 2) = C(1 + 7, T4 + 2) + A(1 + 7, T6) * B(T6, T4 + 2)
 C(1, T4 + 3) = C(1, T4 + 3) + A(1, T6) * B(T6, T4 + 3)
 C(1 + 1, T4 + 3) = C(1 + 1, T4 + 3) + A(1 + 1, T6) * B(T6, T4 + 3)
 C(1 + 2, T4 + 3) = C(1 + 2, T4 + 3) + A(1 + 2, T6) * B(T6, T4 + 3)
 C(1 + 3, T4 + 3) = C(1 + 3, T4 + 3) + A(1 + 3, T6) * B(T6, T4 + 3)
 C(1 + 4, T4 + 3) = C(1 + 4, T4 + 3) + A(1 + 4, T6) * B(T6, T4 + 3)
 C(1 + 5, T4 + 3) = C(1 + 5, T4 + 3) + A(1 + 5, T6) * B(T6, T4 + 3)
 C(1 + 6, T4 + 3) = C(1 + 6, T4 + 3) + A(1 + 6, T6) * B(T6, T4 + 3)
 C(1 + 7, T4 + 3) = C(1 + 7, T4 + 3) + A(1 + 7, T6) * B(T6, T4 + 3)
 4 CONTINUE
 3 CONTINUE
 2 CONTINUE
 1 CONTINUE
 M_100_10_8 = 0
 RETURN

 END

4. Generated Code: Do You Want to Write This?

ACACES 2011, L2: Tuning code with CHiLL

2.2X speedup
for DGEMM

4. Automatically-Generated Code is Faster
than Manually-Tuned Libraries

Hand-tuned(1)
Hand-tuned(2)
Naïve
ATLAS
ACML
GOTO BLAS
TUNE

Target architecture: AMD Phenom, 2.5 GHz, data fits in 64 KB L1,
4 double-precision floating point operations / cycle 10 GFlops / core peak

ACACES 2011, L2: Tuning code with CHiLL

What if data footprint exceeds cache capacity? And
there is data reuse?

–  exploit locality of reused data in various levels of
cache (tile)

–  reduce conflict misses in cache and simplify
addressing (datacopy)

–  exploit reuse in registers (unroll-and-jam)
–  exploit SIMD (in the Opteron SSE) (permute,

unroll)
–  reduce loop overheads (unroll)

5. Optimizations for larger matrix sizes

ACACES 2011, L2: Tuning code with CHiLL

•  Tiling reorders loop nests to bring iterations that reuse data
closer together

•  Used to match data footprint to limited-capacity storage
(today)

•  Also used to divide a computation into parallel threads
(Thursday’s parallel code generation)

J	

I	

J	

I	

5. Transformation for larger matrix sizes:
Tiling

ACACES 2011, L2: Tuning code with CHiLL

5. Tile Loops to Reduce Data Footprint in
Subloop and Exploit Locality

ACACES 2011, L2: Tuning code with CHiLL

CHiLL script
source: mxm.c
procedure: 0
loop: 0
permute([1,2,3])
tile(0,1,16)
tile(0,4,64)

Source code for mxm.c
loop level 1: for(i=0; i<128; i++)
loop level 2: for(j=0; j<128; j++)
loop level 3: for(k=0; k<128; k++)
statement 0: c[i][j]+=a[i][k]*b[k][j];

Resulting code:
for(kk=0; kk <=64; kk+=64)
 for(ii=0; ii<=112; ii+=16)
 for(i=ii; i<=ii+15; i++)
 for(j=0; j<128; j++)
 for(k=kk; k<=kk+63; k++)
 c[i][j]+=a[i][k]*b[k][j];

•  Datacopy creates a temporary to be used in a
subloop as a substitute for a variable
–  Uses polyhedral scanning to compute footprint of data in

subloop
–  Copies variable into temporary in a loop that it creates

preceding where the variable is accessed
–  Replaces variable accesses with accesses to temporary
–  May write back values

•  Key Uses:
–  Explicit data staging for complex memory hierarchies and

software-controlled storage (GPU discussion on Thursday)
–  Eliminate conflict misses and reduce TLB misses by

controlling/reducing data footprint (this example)

5. DataCopy

ACACES 2011, L2: Tuning code with CHiLL

5. Use DataCopy to Reduce Conflict Misses
in Cache

ACACES 2011, L2: Tuning code with CHiLL

CHiLL script
source: mxm.c
procedure: 0
loop: 0
permute([1,2,3])
tile(0,1,16)
tile(0,4,64)
datacopy(0,3,a)

Source code for mxm.c
loop level 1: for(i=0; i<128; i++)
loop level 2: for(j=0; j<128; j++)
loop level 3: for(k=0; k<128; k++)
statement 0: c[i][j]+=a[i][k]*b[k][j];

Resulting code:
for(kk=0; kk <=64; kk+=64)
 for(ii=0; ii<=112; ii+=16) {
 for (i=ii; i<=ii+15; i++)
 for(k=kk; k<=kk+63; k++)
 _P1[i-ii][k-kk] = a[i][k];
 for(i=ii; i<=ii+15; i++)
 for(j=0; j<128; j++)
 for(k=kk; k<=kk+63; k++)
 c[i][j]+=_P1[i-ii][k-kk]*b[k][j];
 }

permute([1,2,3])
tile(0,2,Tj)
tile(0,2,Ti)
tile(0,5,Tk)
/* a is transposed */
datacopy(0,3,a,false,1)
datacopy(0,4,b)
unroll (0,4,Ui)
unroll (0,5,Uj)

permute([1,2,3])
tile(0,1,Ti)
tile(0,4,Tk)
/* a is transposed */
datacopy(0,2,a,false,1)
unroll (0,3,Ui)
unroll (0,4,Uj)

code variant I:
Tile for two levels of cache
Expose SSE instructions

Ti, Tj, Tk, Ui, Uj are unbound parameters

code variant II:
Tile for single level of cache
Expose SSE instructions

5. Optimizations for larger matrix sizes

ACACES 2011, L2: Tuning code with CHiLL

5. Optimizations for larger matrix sizes:
Why transpose a?

ACACES 2011, L2: Tuning code with CHiLL

•  By transposing a, matrices b and a can
both have adjacent data in their
computation, suitable for SSE
instructions (warning: this example is in
Fortran!)

•  We did not do this for small matrices
–  The cost of transpose is prohibitive with

modest gain
–  Aggressive unrolling and (implicit)

statement reordering can expose data

•  Additional parameters and variants
– What is the right loop order? (variant)
– Which loops to unroll? (treat no unrolling as
parameter)

– How much to unroll? (parameter)
–  Tile size for each loop (parameter)
– Whether or not to perform datacopy

(variant)

ACACES 2011, L2: Tuning code with CHiLL

5. Additional Optimization Parameters and
Variants

5. Original Code Variant Generation
Algorithm

For each memory hierarchy level in (Register, L1, L2, ...), use models to:
 1. Select the data structure D which has maximum reuse from reuse

analysis (if possible, one that has not been considered)
 2. Permute the relevant loops and apply tiling (unroll-and-jam for

registers) according to newly selected reuse dimension
 3. Generate copy variant if copying is beneficial
 4. Determine constraints based on D and current memory hierarchy level

characteristics, using register/cache/TLB footprint analysis
 5. Mark D as considered

•  Key Insights:
–  Target data structures to specific levels of the memory

hierarchy based on reuse analysis
–  Compose code transformations and determine constraints

ACACES 2011, L2: Tuning code with CHiLL

5. Mapping Reuse to Memory Hierarchy Levels

do j=1,n
 do k=1,n
 do i=1,n
 c(i,j) += a(i,k) * b(k,j)

register
s

L1 cache

L2
cache

c(i,j) has
temporal
reuse in k

Loop order: I,J,K
Unroll&Jam I,J

b(k,j) has
temporal
reuse in i

Loop order: JJ,KK,I,J,K
Tile J,K

a(i,k) has
temporal
reuse in j

Loop order:KK,II,JJ,I,J,K
Tile I

do i=1,n, Ui // Ui=2
 do j=1,n, Uj // Uj=2
 do k=1,n
 c(i,j) += a(i,k) * b(k,j)
 c(i,j+1) += a(i,k) * b(k,j+1)
 c(i+1,j) += a(i+1,k) * b(k,j)
 c(i+1,j+1) += a(i+1,k) * b(k,j+1)

do jj=1,N,Tj
 do kk=1,n,Tk
 do i=1,n, Ui // Ui=2

 do j=jj, jj+Tk, Uj // Uj=2
 do k=kk,kk+Tk
 c(i,j) += a(i,k) * b(k,j)
 c(i,j+1) += a(i,k) * b(k,j+1)
 c(i+1,j) += a(i+1,k) * b(k,j)
 c(i+1,j+1) += a(i+1,k) * b(k,j+1)

constraint on TJ and TK
based on L1 cache size

constraint on UI and UJ
based on register size

constraint on TK and TI
based on L2 cache size

do jj=1,N,Tj
 do kk=1,n,Tk
 do ii=1,n, Ti

 do j=jj, jj+Tk, Uj // Uj=2
 do i=ii,ii+Ti, Ui // Ui=2

 do k=kk,kk+Tk
 c(i,j) += a(i,k) * b(k,j)
 c(i,j+1) += a(i,k) * b(k,j+1)
 c(i+1,j) += a(i+1,k) * b(k,j)
 c(i+1,j+1) += a(i+1,k) * b(k,j+1)

ACACES 2011, L2: Tuning code with CHiLL

5. Matrix Multiply: Comparison with ATLAS,
vendor BLAS and native compiler

Vendor BLAS
ATLAS BLAS

Native
ECO

matrix multiply on SGI R10K

ACACES 2011, L2: Tuning code with CHiLL

5. Comparison of Search Cost
(Matrix Multiply and Jacobi)

ACACES 2011, L2: Tuning code with CHiLL

•  Tuning kernels with CHiLL recipes
•  Used primitives today, and will use

higher-level commands on Thursday
•  Example tuning experiments on linear

algebra kernels
•  Intuition on when and why to use

certain optimizations

Summary of Lecture

ACACES 2011, L2: Tuning code with CHiLL

The literature contains a very large body of work on loop transformations.
Here are a couple comprehensive references.
[1] J.R. Allen and K. Kennedy,“Optimizing Compilers for Modern Architectures: A

Dependence-Based Approach”, Morgan Kauffman Publishers, 2002.
[2] M.E. Wolf and M.S. Lam, “A Loop Transformation Theory and an Algorithm to Maximize

Parallelism,” IEEE TPDS, 2(4):452-471, Oct. 1991.

References on CHiLL scripts and optimization experiments discussed today.
[3] C. Chen, J. Chame and M. Hall, “Combining Models and Guided Empirical Search to

Optimize for Multiple Levels of the Memory Hierarchy, Proceedings of CGO 2005, March
2005.

[4] M. Hall, J. Chame, C. Chen, J. Shin and G. Rudy, “Loop Transformation Recipes for Code
Generation and Auto-Tuning," Lecture Notes in Computer Science, 2010, Volume 5898,
Languages and Compilers for Parallel Computing, Pages 50-64.

[5] J. Shin, M. W. Hall, J. Chame, C. Chen, P. D. Hovland, "Autotuning and Specialization:
Speeding up Matrix Multiply for Small Matrices with Compiler Technology,'' In Software
Automatic Tuning: from concepts to state-of-the-art results, edited by K. Teranishi, J.
Cavazos, K. Naono and R. Suda, Springer-Verlag Publishers, 2010.

References

ACACES 2011, L2: Tuning code with CHiLL

