
Mary Hall
July, 2011

Compiler-Based Autotuning Technology

Lecture 1: Autotuning and Its Origins

* This work has been partially sponsored by DOE SciDAC as part of the Performance
Engineering Research Institute (PERI), DOE Office of Science, the National Science
Foundation, DARPA and Intel Corporation.

Instructor: My Research Timeline

1986-2000: Interprocedural Optimization
and Automatic Parallelization, Rice D
System and Stanford SUIF Compiler

1998-2005: DIVA Processing-in-
memory system architecture (HP
Itanium-2 architecture)

1998-2004: DEFACTO design
environment for FPGAs (C to VHDL)

2001-2006: Compilation for
multimedia extensions (DIVA,
AltiVec and SSE)

2005-present: Auto-tuning compiler
technology (memory hierarchy,
multimedia extensions, multi-cores and
GPUs)

2007-present: Reports on compiler,
exascale software and archiving
research directions

ACACES 2011, L1: Autotuning and its Origins

Echelon System Sketch
from “GPU Computing To Exascale and Beyond”, Bill Dally, SC10

HPC Toolkit (Rice)
ROSE (LLNL)

CHiLL (USC/ISI and Utah)
ROSE (LLNL)
Orio (Argonne) {

OSKI (LBNL)

Active Harmony (UMD)
GCO (UTK)

PerfTrack (LBNL, SDSC, RENCI)

ACACES 2011, L1: Autotuning and its Origins

(DOE SciDAC) PERI Autotuning Tools

Motivation: A Looming Software Crisis
•  Architectures are getting increasingly complex

–  Multiple cores, deep memory hierarchies, software-
controlled storage, shared resources, SIMD compute
engines, heterogeneity, ...

•  Performance optimization is getting more
important
–  Today’s sequential and parallel applications may not be

faster on tomorrow’s architectures.
–  Especially if you want to add new capability!
–  Managing data locality even more important than

parallelism.
–  Managing power of growing importance, too.

Complexity!
ACACES 2011, L1: Autotuning and its Origins

•  Definition:
–  Automatically generate a “search space” of possible

implementations of a computation
•  A code variant represents a unique implementation of

a computation, among many
•  A parameter represents a discrete set of values that

govern code generation or execution of a variant
–  Measure execution time and compare
–  Select the best-performing implementation

•  Key Issues:
–  Identifying the search space
–  Pruning the search space to manage costs
–  Off-line vs. on-line search

Motivation: What is Autotuning?

ACACES 2011, L1: Autotuning and its Origins

•  Identify search space through a high-level
description that captures a large space of
possible implementations

•  Prune space through compiler domain
knowledge and architecture features

•  Provide access to programmers!
(controversial)

•  Uses source-to-source transformation for
portability, and to leverage vendor code
generation

•  Requires restructuring of the compiler

Motivation: My Philosophy

ACACES 2011, L1: Autotuning and its Origins

Motivation: Collaborative Autotuning “Compiler”

Batch
Compiler

code

input data

Traditional view:

Code
Translation

code

input data
(characteristics)

(Semi-)Autotuning Compiler:

search script(s)

transformation
script(s)

Experiments Engine

ACACES 2011, L1: Autotuning and its Origins

L1: Autotuning and its Origins (today!)

L2: Tuning code with CHiLL

L3: A Closer Look at Polyhedral Compiler
Frameworks

L4: Autotuning for GPU Code Generation

L5: Autotuning High-End Applications

Outline of Course

ACACES 2011, L1: Autotuning and its Origins

1.  Traditional Compiler Organization
2.  Origins in hardware optimization
3.  Related Compiler Organization

•  Use of learning algorithms in compiler
4.  Autotuning systems

•  Library-specific autotuning
•  Application-specific autotuning
•  Compiler-based autotuning

5.  Detailed look at ATLAS, OSKI, SPIRAL,
Active Harmony, PetaBricks and Sequoia

Today’s Lecture: Autotuning and its Origins

ACACES 2011, L1: Autotuning and its Origins

Perform Analysis

Search and Apply
Transformations
➢  Safety/Profitability
➢  Parameters
➢  Composition

Application
Code

Arch.
Spec.

xform xform xform

xform xform xform

Optimized Code

Execution
Environment

Performance
Monitoring

Support

Input Data Set

1. Historical Organization of Compilers

Don’t like
performance?
Rewrite code!

ACACES 2011, L1: Autotuning and its Origins

•  What’s not working
–  Transformations and optimizations often

applied in isolation, but significant
interactions

–  Static compilers must anticipate all possible
execution environments

–  Potential to slow code down; many users say
“never use O3”

–  Users write low-level code to get around
compiler which makes things even worse

1. Historical Organization of Compilers

ACACES 2011, L1: Autotuning and its Origins

1. Example of Programmer-Guided
Transformations

•  Application
 programmer
 has written code
 variants for every
 possible unroll
 factor of two
 innermost loops

•  Straightforward
 for compiler to
 generate this
 code and test for
 best version

LS-DYNA Solver Performance Results

ACACES 2011, L1: Autotuning and its Origins

•  Autotuning is related to hardware (and
hardware-software) design space
exploration
–  The process of analyzing various functionally

equivalent implementations to identify the
one that best meets objectives.

•  Early example:
–  Vinoo Srinivasan et al., "Hardware Software Partitioning with

Integrated Hardware Design Space Exploration," Design,
Automation and Test in Europe Conference and Exhibition, p.
28, Design Automation and Test in Europe (DATE '98), 1998

2. Related Approach in Hardware Design

ACACES 2011, L1: Autotuning and its Origins

Algorithm (C)

Compiler Optimizations (SUIF)
•  Unroll and Jam
•  Scalar Replacement
•  Custom Data Layout

SUIF2VHDL Translation

Behavioral Synthesis
Estimation

Unroll Factor
Selection

Logic Synthesis /
Place&Route

  Overall, less than 2 hours
  5 minutes for optimized design selection

2. Automatic Design Space Exploration in DEFACTO

ACACES 2011, L1: Autotuning and its Origins

3. Related Compiler Organization:
Iterative Compilation with Learning

•  A preceding body of work on using learning techniques (and
sometimes profiling) to make optimization decisions
•  Cooper et al., Eigenmann et al., Stephenson et al, Cavazos et

al., …
•  Examples from

•  Instruction scheduling, optimization flag selection,
optimization sequence, unroll factor selection, …

ACACES 2011, L1: Autotuning and its Origins

a.  Autotuning libraries
–  Library that encapsulates knowledge of library’s performance

under different execution environments
–  Dense linear algebra: ATLAS, PhiPAC
–  Sparse linear algebra: OSKI
–  Signal processing: SPIRAL, FFTW

b.  Application-specific autotuning
–  Active Harmony provides parallel rank order search for

tunable parameters and variants
–  Sequoia and PetaBricks provide language mechanism for

expressing tunable parameters and variants
c.  Compiler-based autotuning

–  Focus of this course

4. Three Types of Autotuning Systems

ACACES 2011, L1: Autotuning and its Origins

•  Many codes spend the bulk of their computation time
performing very common operations
–  Particularly linear algebra and signal processing

•  Enhance performance without requiring low-level
programming of the application

•  Much research has been devoted to achieving high
performance
–  Search space reasonably well understood
–  Performance can still be improved using autotuning

4a. Motivation for Autotuning Libraries

ACACES 2011, L1: Autotuning and its Origins

•  Self-tuning linear algebra library
•  Early description in SIAM 2000
•  ATLAS first popularized notion of self-tuning

libraries
•  Clint Whaley quote: “No such thing as enough

compute speed for many scientific codes”
•  Precursor: PhiPAC, 1997

3a. ATLAS (BLAS)

ACACES 2011, L1: Autotuning and its Origins

3a. ATLAS (BLAS)

ACACES 2011, L1: Autotuning and its Origins Slide source: Clint Whaley

①  Parameterization:
•  Parameters provide different implementations (e.g., tile size)
•  Easy to implement but limited

②  Multiple Implementations:
•  Linear search of routine list (variants)
•  Simple to implement, simple for external contribution
•  Low adaptability, ISA independent, kernel dependent

③  Source Generator:
•  Heavily parameterized program generates varying

implementations
•  Very complicated to program, search and contribute
•  High adaptability, ISA independent, kernel dependent

ATLAS Method of Software Adaptation

3a. Structure of ATLAS Source Generator

ACACES 2011, L1: Autotuning and its Origins Slide source: Jacqueline Chame

GEMM as building block for other Level 3 BLAS functions

•  Sparse matrix-vector multiply < 10% peak,
decreasing
–  Indirect, irregular memory access
–  Low computational intensity vs. dense linear algebra
–  Depends on matrix (run-time) and machine

•  Tuning is becoming more important
•  2× speedup from tuning, will increase

•  Unique challenge of sparse linear algebra
–  Matrix structure dramatically affects performance
–  To the extent possible, exploiting structure leads to better

performance

3a. OSKI (Sparse BLAS)

Slide source: Rich Vuduc ACACES 2011, L1: Autotuning and its Origins

  Exploit 8×8 blocks
  Store blocks & unroll
  Compresses data
  Regularizes accesses

  As r×c ↑, speed ↑	

3a. Example of Matrix Structure in OSKI

Slide source: Rich Vuduc ACACES 2011, L1: Autotuning and its Origins

Reference
Mflop/s
(7.6%)

Mflop/s
(31.1%)

Best: 4×2

3a. Example of Matrix Structure in OSKI:
Speedups on Itanium 2 for different block sizes

Slide source: Rich Vuduc ACACES 2011, L1: Autotuning and its Origins

Library Install-Time (offline) Application Run-Time

Benchmark
data

1. Build for
Target
Arch.

2. Benchmark

Generated
code

variants

Heuristic
models

1. Evaluate
Models

Workload
from program

monitoring History
Matrix

2. Select
Data Struct.

& Code

To user:
Matrix handle
for kernel
calls

3a. Structure of OSKI

Slide source: Rich Vuduc ACACES 2011, L1: Autotuning and its Origins

Algorithm	
 Genera/on	

Algorithm	
 Op/miza/on	

Implementa/on	

Code	
 Op/miza/on	

Compila/on	

Compiler	
 Op/miza/ons	

Problem	
 specifica/on	
 (“DFT	
 1024”	
 or	
 “DFT”)	

algorithm	

C	
 code	

Fast	
 executable	

performance	

Se
ar
ch
	

controls	

controls	

Spiral	

Complete	
 automa+on	
 of	
 	

the	
 implementa-on	
 and	

op-miza-on	
 task	

Basic	
 ideas:	
 	

• Declara+ve	
 representa+on	

of	
 algorithms	

• Rewri+ng	
 systems	
 to	

generate	
 and	
 op-mize	

algorithms	
 at	
 a	
 high	
 level	
 of	

abstrac-on	

• 	
 Similar	
 concepts	
 in	
 FFTW	

Slide source: Franz Franchetti

3a. SPIRAL (Signal Processing)

ACACES 2011, L1: Autotuning and its Origins

Viterbi	
 Decoding	
 Linear	
 Transforms	

Matrix-­‐Matrix	
 Mul/plica/on	
 Synthe/c	
 Aperture	
 Radar	
 (SAR)	

interpola/on	
 2D	
 iFFT	

matched	

filtering	

preprocessing	

convolu/onal	

encoder	

Viterbi	

decoder	

010001	
 11	
 10	
 00	
 01	
 10	
 01	
 11	
 00	
 010001	
 11	
 10	
 01	
 01	
 10	
 10	
 11	
 00	

=	
 £

Slide source: Franz Franchetti

4a. SPIRAL: Rules in Domain-Specific Language

ACACES 2011, L1: Autotuning and its Origins

•  Parameters and
variants arise
naturally in
portable
application code

•  Programmer
expresses tunable
parameters, input
data set properties
and algorithm
variants

•  Tools automatically
generate code and
evaluate tradeoff
space of
application-level
parameters

Parameter cellSize, range = 48:144, step 16

ncell = boxLength/cellSize

for i = 1, ncell
 /* perform computation */

Const cellSize = 48

ncell = boxLength/48

for i = 1, 48
 /* perform computation */

3b. Motivation for Application-level tuning

ACACES 2011, L1: Autotuning and its Origins

Example: Molecular Dynamics Visualization

Active Harmony

Parallel Rank Order Search

•  Search-based collaborative approach
–  Simultaneously explore different tunable parameters to search a

large space defined by the user
•  e.g., Loop blocking and unrolling factors, number of OpenMP

threads, data distribution algorithms, granularity controls, …
–  Supports both online and offline tuning
–  Central controller monitors performance, adjusts parameters

using search algorithms, repeats until converges
–  Can also generate code on-demand for tunable parameters that

need new code (e.g. unroll factors) using code transformation
frameworks (e.g. CHiLL)

3b. Application-level tuning using
Active Harmony

Application

Parameters Performance

Slide source: Ananta Tiwari ACACES 2011, L1: Autotuning and its Origins

•  All, but the best
point of simplex
moves

•  Computations can
be done in parallel

•  N parallel
evaluations for N
+1 point simplex

3b. Active Harmony Parallel Rank
Order Algorithm

Slide source: Ananta Tiwari ACACES 2011, L1: Autotuning and its Origins

4b. Language support for application-
level tuning using PetaBricks

•  Algorithmic choice in
the language is the key
aspect of PetaBricks

•  Programmer can define
multiple rules to
compute the same data

•  Compiler re-uses rules
to create hybrid
algorithms

•  Can express choices at
many different
granularities

ACACES 2011, L1: Autotuning and its Origins Slide source: Saman Amarasinghe

Example: Sort in PetaBricks

4b. Language support for application-
level tuning using PetaBricks

①  PetaBricks source
code is compiled

②  An autotuning
binary is created

③  Autotuning occurs
creating a choice
configuration file

④  Choices are fed
back into the
compiler to create
a final binary

ACACES 2011, L1: Autotuning and its Origins Slide source: Saman Amarasinghe

4b. Application-level tuning is similar
using Sequoia

•  Example shows variants
representing
hierarchical
implementation of
matrix multiply

•  These two tasks
represent different
variants for different
levels of the memory
system

•  Tunable parameters P,
Q and R adjust data
decomposition

Example from Mike Houston, CScaDS 2007 ACACES 2011, L1: Autotuning and its Origins

•  Parameters and variants arise from compiler
optimizations
–  Parameters such as tile size, unroll factor,

prefetch distance
–  Variants such as different data organization or

data placement, different loop order or other
representation of computation

•  Beyond libraries
–  Can specialize to application context (libraries

used in unusual ways)
–  Can apply to more general code

•  Complementary and easily composed with application-
level support

4c. Motivation for Compiler-Based
Autotuning Framework

ACACES 2011, L1: Autotuning and its Origins

4c. CHiLL Compiler-Based Autotuning
Framework

ACACES 2011, L1: Autotuning and its Origins

4c. Combining Models, Heuristics and
Empirical Search

Compiler Models (static)"
•  How much data reuse?"
•  Data footprint in memory hierarchy levels"
•  Profitability estimates of optimizations"

•  “Place” data in specific memory
hierarchy level based on reuse"
•  Copy data tiles mapped to caches
or buffers"

Heuristics"

•  Generate parameterized
code variants"
•  Measure performance to
evaluate and choose next
point to search"
•  Heuristics limit variants "
•  Constraints from models
limit parameter values"

Empirical
Search"

ACACES 2011, L1: Autotuning and its Origins

•  Sampling of autotuning systems
–  Autotuning libraries
–  Application-level autotuning
–  Compiler-based autotuning

•  “Search space” of implementations arises from
–  Parameters
–  Variants

•  Lecture mostly focused on structure of systems and
expressing/generating search space

Summary of Lecture

ACACES 2011, L1: Autotuning and its Origins

ATLAS: J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc and R. C. Whaley,
“Self Adapting Linear Algebra Algorithms and Software", Proceedings of the IEEE, Volume 93,
Number 2, pp. 293-312, February, 2005.

OSKI: R. Vuduc, J. Demmel, and K. Yelick. “OSKI: A library of automatically tuned sparse matrix
kernels”. Proceedings of SciDAC 2005, Journal of Physics: Conference Series, June 2005.

SPIRAL: M. Püschel, J. M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan
Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, R. W.
Johnson and N. Rizzolo. “SPIRAL: Code Generation for DSP Transforms”. Proceedings of the
IEEE, 93(2):232-275, 2005.

FFTW: M. Frigo. 1999. A fast Fourier transform compiler. In Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation (PLDI '99).

Active Harmony: A. Tiwari, J. K. Hollingsworth, “End-to-end Auto-tuning with Active Harmony”. In
Performance Tuning of Scientific Applications, D. Bailey, R.F. Lucas and S. Williams, ed.,
Chapman & Hall/CRC Computational Science Series, 2010.

Sequoia: K. Fatahalian, T. Knight, M. Houston, M. Erez, D. Horn, L. Leem, H. Park, M. Ren, A.
Aiken, W. Dally and P. Hanrahan, “Sequoia: Programming the Memory Hierarchy”. In
Proceedings of Supercomputing 2006, Nov. 2006.

PetaBricks: J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S.
Amarasinghe. 2009. “PetaBricks: a language and compiler for algorithmic choice”. In
Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and
implementation (PLDI '09).

References

ACACES 2011, L2: Tuning code with CHiLL

