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Instructor: My Research Timeline 

1986-2000: Interprocedural Optimization 
and Automatic Parallelization, Rice D 
System and Stanford SUIF Compiler 

1998-2005: DIVA Processing-in-
memory system architecture (HP 
Itanium-2 architecture)  

1998-2004: DEFACTO design 
environment for FPGAs (C to VHDL) 

2001-2006: Compilation for 
multimedia extensions (DIVA, 
AltiVec and SSE) 

2005-present: Auto-tuning compiler 
technology (memory hierarchy, 
multimedia extensions, multi-cores and 
GPUs) 

2007-present: Reports on compiler, 
exascale software and archiving 
research directions 
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Echelon System Sketch 
from “GPU Computing To Exascale and Beyond”, Bill Dally, SC10 



HPC Toolkit (Rice) 
ROSE (LLNL) 

CHiLL (USC/ISI and Utah) 
ROSE (LLNL) 
Orio (Argonne) { 

OSKI (LBNL) 

Active Harmony (UMD) 
GCO (UTK) 

PerfTrack (LBNL, SDSC, RENCI) 
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Motivation: A Looming Software Crisis 
•  Architectures are getting increasingly complex 

–  Multiple cores, deep memory hierarchies, software-
controlled storage, shared resources,  SIMD compute 
engines, heterogeneity, ... 

•  Performance optimization is getting more 
important 
–  Today’s sequential and parallel applications may not be 

faster on tomorrow’s architectures. 
–  Especially if you want to add new capability! 
–  Managing data locality even more important than 

parallelism. 
–  Managing power of growing importance, too.  

Complexity! 
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•  Definition:  
–  Automatically generate a “search space” of possible 

implementations of a computation 
•  A code variant represents a unique implementation of 

a computation, among many  
•  A parameter represents a discrete set of values that 

govern code generation or execution of a variant 
–  Measure execution time and compare 
–  Select the best-performing implementation 

•  Key Issues: 
–  Identifying the search space 
–  Pruning the search space to manage costs 
–  Off-line vs. on-line search 

Motivation: What is Autotuning? 
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•  Identify search space through a high-level 
description that captures a large space of 
possible implementations 

•  Prune space through compiler domain 
knowledge and architecture features 

•  Provide access to programmers! 
(controversial) 

•  Uses source-to-source transformation for 
portability, and to leverage vendor code 
generation  

•  Requires restructuring of the compiler 

Motivation: My Philosophy 
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Motivation: Collaborative Autotuning “Compiler” 

Batch 
Compiler 

code 

input data 

Traditional view: 

Code  
Translation 

code 

input data 
(characteristics) 

(Semi-)Autotuning Compiler: 

search script(s) 

transformation 
script(s) 

Experiments Engine 
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L1: Autotuning and its Origins (today!) 

L2: Tuning code with CHiLL 

L3: A Closer Look at Polyhedral Compiler 
Frameworks 

L4: Autotuning for GPU Code Generation 

L5: Autotuning High-End Applications 

Outline of Course 
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1.  Traditional Compiler Organization 
2.  Origins in hardware optimization 
3.  Related Compiler Organization 

•  Use of learning algorithms in compiler 
4.  Autotuning systems 

•  Library-specific autotuning 
•  Application-specific autotuning 
•  Compiler-based autotuning 

5.  Detailed look at ATLAS, OSKI, SPIRAL, 
Active Harmony, PetaBricks and Sequoia 

Today’s Lecture: Autotuning and its Origins 
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Perform Analysis 

Search and Apply 
Transformations 
➢  Safety/Profitability  
➢  Parameters 
➢  Composition 

Application 
Code 

Arch. 
Spec. 

xform xform xform 

xform xform xform 

Optimized Code 

Execution 
Environment 

Performance 
Monitoring 

Support 

Input Data Set 

1. Historical Organization of Compilers 

Don’t like 
performance? 
Rewrite code! 
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•  What’s not working 
–  Transformations and optimizations often 

applied in isolation, but significant 
interactions 

–  Static compilers must anticipate all possible 
execution environments  

–  Potential to slow code down; many users say 
“never use O3” 

–  Users write low-level code to get around 
compiler which makes things even worse 

1. Historical Organization of Compilers 
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1. Example of Programmer-Guided  
Transformations 

•  Application          
  programmer 
  has written code  
  variants for every  
  possible unroll  
  factor of two  
  innermost loops  

•  Straightforward  
  for compiler to   
  generate this  
  code and test for  
  best version 

LS-DYNA Solver Performance Results 
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•  Autotuning is related to hardware (and 
hardware-software) design space 
exploration 
–  The process of analyzing various functionally 

equivalent implementations to identify the 
one that best meets objectives. 

•  Early example: 
–  Vinoo Srinivasan et al., "Hardware Software Partitioning with 

Integrated Hardware Design Space Exploration," Design, 
Automation and Test in Europe Conference and Exhibition, p. 
28, Design Automation and Test in Europe (DATE '98), 1998  

2. Related Approach in Hardware Design 
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Algorithm (C) 

Compiler Optimizations (SUIF) 
•  Unroll and Jam 
•  Scalar Replacement 
•  Custom Data Layout 

SUIF2VHDL Translation 

Behavioral Synthesis 
Estimation 

Unroll Factor 
Selection 

Logic Synthesis / 
Place&Route 

  Overall, less than 2 hours 
  5 minutes for optimized design selection 

2. Automatic Design Space Exploration in DEFACTO  
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3. Related Compiler Organization: 
Iterative Compilation with Learning  

•  A preceding body of work on using learning techniques (and 
sometimes profiling) to make optimization decisions 
•  Cooper et al., Eigenmann et al., Stephenson et al, Cavazos et 

al., … 
•  Examples from  

•  Instruction scheduling, optimization flag selection, 
optimization sequence, unroll factor selection, … 
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a.  Autotuning libraries 
–  Library that encapsulates knowledge of library’s performance 

under different execution environments 
–  Dense linear algebra: ATLAS, PhiPAC 
–  Sparse linear algebra: OSKI 
–  Signal processing: SPIRAL, FFTW  

b.  Application-specific autotuning 
–  Active Harmony provides parallel rank order search for 

tunable parameters and variants 
–  Sequoia and PetaBricks provide language mechanism for 

expressing tunable parameters and variants 
c.  Compiler-based autotuning 

–  Focus of this course 

4. Three Types of Autotuning Systems 
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•  Many codes spend the bulk of their computation time 
performing very common operations 
–  Particularly linear algebra and signal processing 

•  Enhance performance without requiring low-level 
programming of the application 

•  Much research has been devoted to achieving high 
performance 
–  Search space reasonably well understood 
–  Performance can still be improved using autotuning 

4a. Motivation for Autotuning Libraries 
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•  Self-tuning linear algebra library 
•  Early description in SIAM 2000  
•  ATLAS first popularized notion of self-tuning 

libraries 
•  Clint Whaley quote: “No such thing as enough 

compute speed for many scientific codes” 
•  Precursor: PhiPAC, 1997 

3a. ATLAS (BLAS) 
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3a. ATLAS (BLAS) 

ACACES 2011, L1: Autotuning and its Origins Slide source: Clint Whaley 

①  Parameterization:  
•  Parameters provide different implementations (e.g., tile size) 
•  Easy to implement but limited 

②  Multiple Implementations: 
•  Linear search of routine list (variants) 
•  Simple to implement, simple for external contribution 
•  Low adaptability, ISA independent, kernel dependent  

③  Source Generator: 
•  Heavily parameterized program generates varying 

implementations 
•  Very complicated to program, search and contribute 
•  High adaptability, ISA independent, kernel dependent 

ATLAS Method of Software Adaptation 



3a. Structure of ATLAS Source Generator 
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GEMM as building block for other Level 3 BLAS functions  



•  Sparse matrix-vector multiply < 10% peak, 
decreasing 
–  Indirect, irregular memory access 
–  Low computational intensity vs. dense linear algebra 
–  Depends on matrix (run-time) and machine 

•  Tuning is becoming more important 
•  2× speedup from tuning, will increase 

•  Unique challenge of sparse linear algebra 
–  Matrix structure dramatically affects performance 
–  To the extent possible, exploiting structure leads to better 

performance 

3a. OSKI (Sparse BLAS) 
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  Exploit 8×8 blocks 
  Store blocks & unroll 
  Compresses data 
  Regularizes accesses 

  As r×c ↑, speed ↑	



3a. Example of Matrix Structure in OSKI 
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Reference 
Mflop/s 
(7.6%) 

Mflop/s 
(31.1%) 

Best: 4×2 

3a. Example of Matrix Structure in OSKI: 
Speedups on Itanium 2 for different block sizes 
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Library Install-Time (offline) Application Run-Time 

Benchmark 
data 

1. Build for 
Target 
Arch. 

2. Benchmark 

Generated 
code 

variants 

Heuristic 
models 

1. Evaluate 
Models 

Workload 
from program 

monitoring History 
Matrix 

2. Select 
Data Struct. 

& Code 

To user: 
Matrix handle 
for kernel 
calls 

3a. Structure of OSKI 
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Slide source: Franz Franchetti 

3a. SPIRAL (Signal Processing) 
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Slide source: Franz Franchetti 

4a. SPIRAL: Rules in Domain-Specific Language 
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•  Parameters and 
variants arise 
naturally in 
portable 
application code 

•  Programmer 
expresses tunable 
parameters, input 
data set properties 
and algorithm 
variants 

•  Tools automatically 
generate code and 
evaluate tradeoff 
space of 
application-level 
parameters  

Parameter cellSize, range = 48:144, step 16 

ncell = boxLength/cellSize 

for i = 1, ncell 
   /* perform computation */ 

Const cellSize = 48 

ncell = boxLength/48 

for i = 1, 48 
   /* perform computation */ 

3b. Motivation for Application-level tuning 
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Active Harmony 

Parallel Rank Order Search 

•  Search-based collaborative approach 
–  Simultaneously explore different tunable parameters to search a 

large space defined by the user 
•  e.g., Loop blocking and unrolling factors, number  of OpenMP 

threads, data distribution algorithms, granularity controls, … 
–  Supports both online and offline tuning 
–  Central controller monitors performance, adjusts parameters 

using search algorithms, repeats until converges 
–  Can also generate code on-demand for tunable parameters that 

need new code (e.g. unroll factors) using code transformation 
frameworks (e.g. CHiLL) 

3b. Application-level tuning using 
Active Harmony 

Application 

Parameters Performance 

Slide source: Ananta Tiwari ACACES 2011, L1: Autotuning and its Origins 



•  All, but the best 
point of simplex 
moves 

•  Computations can 
be done in parallel 

•  N parallel 
evaluations for N
+1 point simplex 

3b. Active Harmony Parallel Rank 
Order Algorithm 
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4b. Language support for application-
level tuning using PetaBricks 

•  Algorithmic choice in 
the language is the key 
aspect of PetaBricks 

•  Programmer can define 
multiple rules to 
compute the same data 

•  Compiler re-uses rules 
to create hybrid 
algorithms 

•  Can express choices at 
many different 
granularities 
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Example: Sort in PetaBricks 



4b. Language support for application-
level tuning using PetaBricks 

①  PetaBricks source 
code is compiled 

②  An autotuning 
binary is created 

③  Autotuning occurs 
creating a choice 
configuration file 

④  Choices are fed 
back into the 
compiler to create 
a final binary 
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4b. Application-level tuning is similar 
using Sequoia 

•  Example shows variants 
representing 
hierarchical 
implementation of 
matrix multiply 

•  These two tasks 
represent different 
variants for different 
levels of the memory 
system 

•  Tunable parameters P, 
Q and R adjust data 
decomposition 

Example from Mike Houston, CScaDS 2007 ACACES 2011, L1: Autotuning and its Origins 



•  Parameters and variants arise from compiler 
optimizations 
–  Parameters such as tile size, unroll factor, 

prefetch distance 
–  Variants such as different data organization or 

data placement, different loop order or other 
representation of computation 

•  Beyond libraries 
–  Can specialize to application context (libraries 

used in unusual ways) 
–  Can apply to more general code 

•  Complementary and easily composed with application-
level support 

4c. Motivation for Compiler-Based 
Autotuning Framework 
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4c. CHiLL Compiler-Based Autotuning 
Framework 
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4c. Combining Models, Heuristics and 
Empirical Search 

Compiler Models (static)"
•  How much data reuse?"
•  Data footprint in memory hierarchy levels"
•  Profitability estimates of optimizations"

•  “Place” data in specific memory 
hierarchy level based on reuse"
•  Copy data tiles mapped to caches 
or buffers"

Heuristics"

•  Generate parameterized 
code variants"
•  Measure performance to 
evaluate and choose next 
point to search"
•  Heuristics limit variants "
•  Constraints from models 
limit parameter values"

Empirical 
Search"
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•  Sampling of autotuning systems 
–  Autotuning libraries 
–  Application-level autotuning 
–  Compiler-based autotuning 

•   “Search space” of implementations arises from 
–  Parameters 
–  Variants 

•  Lecture mostly focused on structure of systems and 
expressing/generating search space 

Summary of Lecture 
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