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•  What about parallel code? 
–  Emerging multi-core and many-core 

architectures 
–  New (CUDA and OpenCL) and old (OpenMP 

data-parallel programming models 
–  Heterogeneous systems 

•  Different CHiLL scripts can describe mapping 
for different architectures, applied to the 
same input code 
–  Portable, heterogeneous support 
–  Today we’ll generate CUDA code 

Motivation 
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•  Old approaches:  
–  Limited to loops and array computations 
–  Difficult to find sufficient granularity (parallel work between synchronization) 
–  Success but from fragile, complex software 

•  New ideas: 
–  Finer granularity of parallelism (more plentiful) 
–  Combine with hardware support (e.g., speculation and multithreading) 
–  Input from the user and autotuning 

Previous Work in Automatic Parallelization 

From Hall et al, “Maximizing Multiprocessor 
Performance with the SUIF Compiler”, IEEE 
Computer, Dec. 1996. 

50% higher Specfp95 ratio than previously 
reported 
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1.  Basics on GPUs and GPU code generation 
2.  A programming language interface adds 

another layer of abstraction  
3.  CUDA-CHiLL, Automatic Parallelization for 

GPUs 
a.  Example, Matrix-Vector Multiply 
b.  Transformation Strategy Generator 
c.  Example, Matrix-Matrix Multiply for two GPU 

architectures 
d.  Other examples: Convolution and MRI-Q 

4.  Productivity improvements 
5.  Extensive performance results 

Outline for Today’s Lecture 
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1. Nvidia GPU Basics: Two-Level Parallelism 
Hierarchy 

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
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1. Nvidia GPU Basics: Complex GPU Memory 
Hierarchy 

Global Memory 
–1GB for GTX 280 
–Access 100-200 cycles 
–Bandwidth optimization:  
   * Coalesced global memory accesses 
   * Neighboring threads access adjacent 

 data  
–Also, Texture/Constant Memory  
Shared Memory 
–16K per SM 
–Shared across threads of SM 
Register File 
–16K per SM 
–Thread local data 

Data Cache on Fermi only 
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009 
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•  Identify two levels of parallelism 
•  Block-level parallelism must use very expensive synchronization to 

protect global memory (so should be avoided) 
•  Barrier synchronization available at the thread level 

•  Data placement in the very complex memory hierarchy 
•  Registers for thread-local data 
•  “Shared” (scratchpad) memory for data shared across threads in 

a block 
•  Global memory for data with no reuse 
•  Texture and constant memory for read-only, reused data 

•  Optimizations to improve memory bandwidth 
•  Coalesce global memory accesses 
•  Avoid shared memory bank conflicts 
•  Parallel access using texture memory 

1. GPU Code Generation Requirements 
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2. CUDA-CHiLL System 
•  Input: Sequential C Code 
•  Transformation Strategy 

Generator (TSG) automatically 
generates transformation recipes 
•  Computational decomposition 
•  Data Staging 

•  High-level CUDA abstraction layer 
generates CHiLL primitives 
•  Compact scripting language 

•  CHiLL primitives 
•  Transformation and code 

generation 
•  Autotuning and pruning of the 

search space 

ACACES 2011, L4: Parallel code and CUDA-CHiLL 



•  High-level, programmable interface to 
transformation and code generation – a 
programming language approach 
–  Encapsulation and control flow 
–  Queries to compiler guide optimization 
–  Support users with different skill levels  

•  GPU Code Generation – CUDA-CHiLL 
–  Rapid compiler prototyping through scripting language 

(Lua) 
–  Compact: CUDA-CHiLL is roughly 300 lines of Lua code 

•  A model for other context-specific abstraction 
using CHiLL 

2. Higher-Level Abstraction in CUDA-
CHiLL System 
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Transformation and Parameters Description 
permute 
([stmt],[level],order) 

Permute optional [stmt] to optional loop [level] according to 
order.  Can omit [stmt] and [level] and entire loop nest is 
permuted. 

unroll 
(stmt,level,unrollfactor) 

Unroll loop at level for the subloop specified by stmt/level. 
Unroll by unrollfactor. 

tile 
(stmt,level,ts,[outerlooplevel]) 

Tile loop at level for the subloop specified by stmt/level 
and tile size ts.  Place controlling loop at optional 
[outerlooplevel] or defaults to outermost. 

datacopy 
(stmt,level,array,[index]) 

Calculate footprint for all references to array in subloop 
specified by stmt/level and copy into temporary, replacing 
original accesses with copy. Optional [index] refers to 
fastest-changing dimension. 

split(stmt,level,condition) Split iteration space at subloop specified by stmt/level 
according to condition and its complement. 

datacopy_privatized  
(stmt,level,array,[index]) 

Similar to datacopy, but creates a private copy in parallel 
thread code. 

Other transformations include: fuse, distribute, skew, scale, reverse, shift, peel, 
nonsingular 

2. Recall CHiLL Set of Transformations 
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Command Example Parameter Description 

tile_by_index 

{“i”,”j”} Indices of the loops to be tiled 

{TI,TJ} Tile sizes for each index variable 

{l1_control=“ii”, l2_control= “jj”} Tile controlling loop names 

{“ii”,”jj”,”I”,”j”} Final loop order 

cudaize 
“gpuMV” Name of generated kernel 

{a=N,b=N,c=N*N} Sizes of input arrays 
{block={“ii”}, thread={“jj”}} Indices of blocks and threads 

copy_to_registers 
“kk” Loop level for copy 

“c” Array to be copied 

copy_to_shared 
“tx” Loop level for copy 

“b” Array to be copied 

-16 Input to padding 

Others: copy_to_texture, copy_to_constant 

unroll_to_level 1 Level of loop nest to unroll 

2. CUDA-CHiLL Set of Transformations 
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2. CUDA-CHiLL Tiling Algorithm 
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3a. Example: Matrix-Vector Multiply 

for (i=0; i<N; i++)  
   for (j=0; j<N; j++) 
       a[i] = a[i] + c[j][i]*b[j]; 
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3a. TSG: Computation Decomposition for 
Matrix-Vector Multiply 

  Block Parallelism 

  Thread Parallelism 

tile_by_index({“i”}, {TI},
{l1_control="ii”},{"ii","i", "j”}) 

cudaize( block{“ii”}, thread{} ) 

cudaize( block{“ii”}, thread{“i”} ) 
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•  Data Staging 
•  Shared Memory 

•  Registers 

•   Cudaize 
•  Unrolling 

3a. TSG: Data Staging for Matrix-
Vector Multiply 

tile_by_index({“j”}, {TJ},
{l1_control=“jj”},{"ii",”jj”,"i", "j”}) 

cudaize( block{“ii”}, thread{“i”} ) 

unroll to depth( 1 ) 

Data Reuse 
inside thread 

Data Reuse 
across 
threads 

Final Loop 
Order 
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CUDA-CHiLL Recipe 

N = 1024 
TI= TJ = 32 
tile_by_index({“i”,”j”}, 

{TI,TJ},{l1_control="ii”, 
l2_control=“k”},{"ii", 
“jj”,"i", "j”})  

normalize_index(“i”) 

cudaize(“mv_GPU”, {a=N, 
b=N, c=N*N},{block=
{“ii”}, thread={“i”}}) 

copy_to_shared(“tx”, “b”, 1) 
copy_to_registers(“jj”, “a”) 
unroll_to_depth(1)  
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Final MV Generated Code: with Data staged in shared memory & registers. 
__global__ GPU_MV(float* a, float* b, float** c) { 
int bx = blockIdx.x; int tx = threadIdx.x; 
__shared__ float bcpy[32]; 
float acpy = a[tx + 32 * bx]; 
for (jj = 0; jj < 32; jj++) { 
     bcpy[tx] = b[32 * jj + tx]; 
     __syncthreads(); 
    //this loop is actually fully unrolled 
    for (j = 32 * jj; j <= 32 * jj + 32; j++) 
        acpy = acpy + c[j][32 * bx + tx] * bcpy [j]; 
       __syncthreads(); 
} 
a[tx + 32 * bx] = acpy;  
}  

Generated Code: with Computational decomposition only. 
__global__ GPU_MV(float* a, float* b, float** c) { 
int bx = blockIdx.x; int tx = threadIdx.x; 
int i = 32*bx+tx; 
for (j = 0; j < N; j++) 

 a[i] = a[i] + c[j][i] * b[j]; 
}  

3a. Matrix-Vector Multiply: GPU Code 
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3b. TSG: 3-Phase Approach 

Phase I:  
Identify Candidate 

Computation 
Decompositions 

Phase II:  
For a given computation 
decomposition, identify 
candidates for different 

memory hierarchy 
levels 

Phase III/IV: Code Gen 
& Autotuning 

Holding computation and 
data partition sizes fixed 

(tile parameters), determine 
most profitable data 

placement for each data 
structure.  Then, tune for tile 

parameters. 
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This approach leads 
to a small number of 
implementations, in 
the tens of variants. 



3b. TSG: Identifying Strategies 
Parallel Mapping 
•  Use dependence information and global memory coalescing concept 
to identify candidate parallel loops for blocks and threads. 
•  Generate tiling for block and thread decomposition. 
Manage Heterogeneous Memory Hierarchy 
•  Register candidate: any data with reuse inside a thread. 
•  Shared memory candidate: any data with reuse across threads in a 
block AND any data with non-coalesced global memory  accesses. 
•  Texture memory candidate: any read-only data already mapped to 
shared memory or registers. 
•  Constant memory candidate: read-only data with reuse across 
threads (and blocks) and short reuse distances. 
Other Optimizations 
•  Aggressive loop unrolling by default to improve ILP, increase 
register reuse and reduce loop overhead. 
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•  Next we show the distinct 
implementations our autotuning 
framework identifies for the GTX-280 
and Fermi 

•  Achieves comparable results to best-
known previous implementations  

3c. Matrix Multiply Example, Portability 
to Different Architectures 
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3c. Comparison of Two GPUs 
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GTX-280 Tesla C2050 
#SMs 30 14 
Cores/SM 8 32 
Total cores 240 448 
Peak (SP) 933 GF/s 1.03 TF/s 
Peak (DP) 87 GF/s 515 GF/s 
Global memory 1 GB 3 GB   
Bandwidth 142 GB/s 144 GB/s 
Shared memory/SM 16KB (up to) 48 KB 
Registers/SM 16 K 32 K 
“Texture” accesses Yes Yes 
Data cache 0 (up to) 48 KB 



3c. Automatically-Generated Matrix-
Matrix Multiply Scripts 

a in shared memory, both a and b are 
read through texture memory 

Different computation decomposition 
leads to additional tile command 
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TC2050 Fermi implementation 
Mostly corresponds to CUBLAS 
3.2 and MAGMA  

GTX-280 implementation 
Mostly corresponds to CUBLAS 
2.x and Volkov’s SC08 paper 



3d. Another Example, MRI-Q 
Source code from Parboil 
benchmark 

Automatically-generated script 

•  Kernel from an MRI computation, part 
of Parboil suite  

• Our compiler identified a different 
strategy that leads to higher 
performance than the manually-
written code  
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3d. Another Example, 2D Convolution 

Sequential Code 
for(i=0;i<N;++i) 
   for(j=0;j<N;++j) 
     for(k=0;k<M;++k) 

  for(l=0;l<M;++l) 
  c[i][j] = c[i][j] + a[k+i][l+j] * b[k][l]; 

CUDA-CHiLL Recipe 
N=4096, M=32, TI =32, TJ = 16, Tl=4 
permute(0,{"j","i","k","l"}) 

tile_by_index({"j","i"}, {TI,TJ}, {l1_control="jj", 
l2_control="ii"}, {"jj", "ii", "j", "i","k","l"}) 

normalize_index("j") 
normalize_index("i") 
cudaize("Kernel_GPU", {a=(N+M)*(N+M), b=M*M, 

c=(N+M)*(N+M)},{block={"jj","ii"}, thread=
{"j","i"}}) 

copy_to_shared("tx","a",-16) 
copy_to_shared("tx","b",-16) 
copy_to_registers("tx", "c") 
unroll_to_depth(1) 

Optimized Code  
__shared__ float (_P1[47])[31]; 
 __shared__ float (_P2[16])[17];float tmp3; 
… 
for (tmp = 16 * by + 3 * ty; tmp <= min(16 * by + 30, 16 

* by + 3 * ty + 2); tmp++) 
 for (tx1 = 2 * tx; tx1 <= min(2 * tx + 1, 46); tx1++) 

               _P1[ tx1][tmp - 16 * by] = a[tmp][32 * bx + tx1]; 
__syncthreads(); 
    for (tmp = 0; tmp <= 15; tmp++) 

 for (tx1 = 2 * tx; tx1 <= 2 * tx + 1; tx1++) 
               _P2[tx1][tmp] = b[tmp][tx1]; 
__syncthreads(); 
tmp3 = c[k + 16 * by][tx + 32 * bx]; 
for (k = 0; k <= 15; k++) 

 for (l = 0; l <= 15; l++) 
            tmp3 = tmp3 + _P1[l + tx ][k + ty] * _P2[l][k]; 
c[k + 16 * by][tx + 32 * bx] = tmp3; 

Data structures 
for shared 

memory 

Complex bounds for 
shared memory copy 

loops 
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4. Increased Productivity of CUDA-CHiLL 
Interface  

CUDA-CHiLL script (in Lua): 
N = 1024 
TI=32 
tile_by_index({“i”}, {TI},

{l1_control="ii”},{"ii", "i", "j”})  
//normalize to start at “i”=0 
normalize_index(“i”) 
cudaize(“mv_GPU”, {a=N, b=N, 

c=N*N},{block={“ii”}, thread=
{“i”}}) 

copy_to_shared(“tx”, “b”, 1) 
copy_to_registers(“k”, “a”) 
unroll_to_depth(1)  

Equivalent CHiLL script 
(generated by Lua interface): 

NI = 1024 
TI = 32 
original() 
tile(0, 1, TI, 1, i, ii, 1) 
tile(0, 3, TI, 2, j, k, 1) 
tile(0, 3, 3) 
datacopy(0, 3, b,{“tmp1”,”tmp2”}, 
      false,0,1,1,true) 
add_sync(0, "i") 
add_sync(1, "i") 
tile(1, 3, 3) 
datacopy_privatized(0, k, a, {“i”, “j”}) 
unroll(0, 5, 0) 

Simple example where tile size 
evenly divides problem size. 
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4. Increased Productivity: Matrix 
Multiply 

ACACES 2011, L4: Parallel code and CUDA-CHiLL 
CHiLL Script Source: 
Gabe Rudy 
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5. Performance Results: Matrix-Matrix 
and Matrix-Vector Multiply 



5. Performance Results: Convolution and 
MRI-Q 

2-D Convolution 

MRI-Q 

GTX-280 TC2050 Fermi 
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•  Table shows reduction in performance when 
specific level of the memory hierarchy is not 
used. 

5. Performance Results: Impact of 
Different Memory Hierarchy Levels 
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Unroll Registers Shared Memory Texture Memory 

Kernel GTX280 Tesla 
C2050 

GTX280 Tesla 
C2050 

GTX280 Tesla 
C2050 

GTX280 Tesla 
C2050 

DGEMM 94.85 96.55 92.32 84.86 72.17 58.71 1.38 4.77 
DGEMV 57.55 5.55 63.63 68.99 27.16 0.38 0.0 3.8 
DGEMV(T) 64.31 0.63 20.51 19.94 88.83 63.06 0.55 0.0 
MRIQ 0.00 1.63 12.47 11.25 10.61 12.89 0.0 0.0 
Conv. 44.16 47.46 77.29 54.29 89.19 23.24 5.66 0.0 



•  Generated code is very long, over 1000 
lines of code for some versions of Matrix-
Matrix Multiply 
–  Problem size may not be evenly divided by 

computation decomposition parameters 
–  Cleanup code for tiling and unrolling can be 

lengthy, important to optimize too 
•  No more than 32 versions needed to 

generalize 
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5. Performance Results: A Few More 
Details 



Summary of Lecture 
•  Two ideas 

–  A programming language interface to CHiLL’s 
primitives allows custom higher-level abstractions 

–  Used to develop CUDA-CHiLL abstractions for 
auto-tuning high-performance GPU code  

•  Features 
–  TSG generates multiple possible implementations 

that are searched using autotuning 
–  Performance: can sometimes outperform CUBLAS 

and manual code 
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