
Mary Hall
July, 2011

Compiler-Based Autotuning Technology

Lecture 4: Parallel Code Generation
and CUDA-CHiLL

* This work has been partially sponsored by DOE SciDAC as part of the Performance
Engineering Research Institute (PERI), DOE Office of Science, the National Science
Foundation, DARPA and Intel Corporation.

•  What about parallel code?
–  Emerging multi-core and many-core

architectures
–  New (CUDA and OpenCL) and old (OpenMP

data-parallel programming models
–  Heterogeneous systems

•  Different CHiLL scripts can describe mapping
for different architectures, applied to the
same input code
–  Portable, heterogeneous support
–  Today we’ll generate CUDA code

Motivation

ACACES 2011, L4: Parallel code and CUDA-CHiLL

•  Old approaches:
–  Limited to loops and array computations
–  Difficult to find sufficient granularity (parallel work between synchronization)
–  Success but from fragile, complex software

•  New ideas:
–  Finer granularity of parallelism (more plentiful)
–  Combine with hardware support (e.g., speculation and multithreading)
–  Input from the user and autotuning

Previous Work in Automatic Parallelization

From Hall et al, “Maximizing Multiprocessor
Performance with the SUIF Compiler”, IEEE
Computer, Dec. 1996.

50% higher Specfp95 ratio than previously
reported

ACACES 2011, L4: Parallel code and CUDA-CHiLL

1.  Basics on GPUs and GPU code generation
2.  A programming language interface adds

another layer of abstraction
3.  CUDA-CHiLL, Automatic Parallelization for

GPUs
a.  Example, Matrix-Vector Multiply
b.  Transformation Strategy Generator
c.  Example, Matrix-Matrix Multiply for two GPU

architectures
d.  Other examples: Convolution and MRI-Q

4.  Productivity improvements
5.  Extensive performance results

Outline for Today’s Lecture

ACACES 2011, L4: Parallel code and CUDA-CHiLL

1. Nvidia GPU Basics: Two-Level Parallelism
Hierarchy

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign ACACES 2011, L4: Parallel code and CUDA-CHiLL

1. Nvidia GPU Basics: Complex GPU Memory
Hierarchy

Global Memory
–1GB for GTX 280
–Access 100-200 cycles
–Bandwidth optimization:
 * Coalesced global memory accesses
 * Neighboring threads access adjacent

 data
–Also, Texture/Constant Memory
Shared Memory
–16K per SM
–Shared across threads of SM
Register File
–16K per SM
–Thread local data

Data Cache on Fermi only
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009
ECE498AL, University of Illinois, Urbana-Champaign ACACES 2011, L4: Parallel code and CUDA-CHiLL

•  Identify two levels of parallelism
•  Block-level parallelism must use very expensive synchronization to

protect global memory (so should be avoided)
•  Barrier synchronization available at the thread level

•  Data placement in the very complex memory hierarchy
•  Registers for thread-local data
•  “Shared” (scratchpad) memory for data shared across threads in

a block
•  Global memory for data with no reuse
•  Texture and constant memory for read-only, reused data

•  Optimizations to improve memory bandwidth
•  Coalesce global memory accesses
•  Avoid shared memory bank conflicts
•  Parallel access using texture memory

1. GPU Code Generation Requirements

ACACES 2011, L4: Parallel code and CUDA-CHiLL

2. CUDA-CHiLL System
•  Input: Sequential C Code
•  Transformation Strategy

Generator (TSG) automatically
generates transformation recipes
•  Computational decomposition
•  Data Staging

•  High-level CUDA abstraction layer
generates CHiLL primitives
•  Compact scripting language

•  CHiLL primitives
•  Transformation and code

generation
•  Autotuning and pruning of the

search space

ACACES 2011, L4: Parallel code and CUDA-CHiLL

•  High-level, programmable interface to
transformation and code generation – a
programming language approach
–  Encapsulation and control flow
–  Queries to compiler guide optimization
–  Support users with different skill levels

•  GPU Code Generation – CUDA-CHiLL
–  Rapid compiler prototyping through scripting language

(Lua)
–  Compact: CUDA-CHiLL is roughly 300 lines of Lua code

•  A model for other context-specific abstraction
using CHiLL

2. Higher-Level Abstraction in CUDA-
CHiLL System

ACACES 2011, L4: Parallel code and CUDA-CHiLL

Transformation and Parameters Description
permute
([stmt],[level],order)

Permute optional [stmt] to optional loop [level] according to
order. Can omit [stmt] and [level] and entire loop nest is
permuted.

unroll
(stmt,level,unrollfactor)

Unroll loop at level for the subloop specified by stmt/level.
Unroll by unrollfactor.

tile
(stmt,level,ts,[outerlooplevel])

Tile loop at level for the subloop specified by stmt/level
and tile size ts. Place controlling loop at optional
[outerlooplevel] or defaults to outermost.

datacopy
(stmt,level,array,[index])

Calculate footprint for all references to array in subloop
specified by stmt/level and copy into temporary, replacing
original accesses with copy. Optional [index] refers to
fastest-changing dimension.

split(stmt,level,condition) Split iteration space at subloop specified by stmt/level
according to condition and its complement.

datacopy_privatized
(stmt,level,array,[index])

Similar to datacopy, but creates a private copy in parallel
thread code.

Other transformations include: fuse, distribute, skew, scale, reverse, shift, peel,
nonsingular

2. Recall CHiLL Set of Transformations

ACACES 2011, L4: Parallel code and CUDA-CHiLL

Command Example Parameter Description

tile_by_index

{“i”,”j”} Indices of the loops to be tiled

{TI,TJ} Tile sizes for each index variable

{l1_control=“ii”, l2_control= “jj”} Tile controlling loop names

{“ii”,”jj”,”I”,”j”} Final loop order

cudaize
“gpuMV” Name of generated kernel

{a=N,b=N,c=N*N} Sizes of input arrays
{block={“ii”}, thread={“jj”}} Indices of blocks and threads

copy_to_registers
“kk” Loop level for copy

“c” Array to be copied

copy_to_shared
“tx” Loop level for copy

“b” Array to be copied

-16 Input to padding

Others: copy_to_texture, copy_to_constant

unroll_to_level 1 Level of loop nest to unroll

2. CUDA-CHiLL Set of Transformations

ACACES 2011, L4: Parallel code and CUDA-CHiLL

2. CUDA-CHiLL Tiling Algorithm

ACACES 2011, L4: Parallel code and CUDA-CHiLL

3a. Example: Matrix-Vector Multiply

for (i=0; i<N; i++)
 for (j=0; j<N; j++)
 a[i] = a[i] + c[j][i]*b[j];

ACACES 2011, L4: Parallel code and CUDA-CHiLL

3a. TSG: Computation Decomposition for
Matrix-Vector Multiply

  Block Parallelism

  Thread Parallelism

tile_by_index({“i”}, {TI},
{l1_control="ii”},{"ii","i", "j”})

cudaize(block{“ii”}, thread{})

cudaize(block{“ii”}, thread{“i”})

ACACES 2011, L4: Parallel code and CUDA-CHiLL

•  Data Staging
•  Shared Memory

•  Registers

•  Cudaize
•  Unrolling

3a. TSG: Data Staging for Matrix-
Vector Multiply

tile_by_index({“j”}, {TJ},
{l1_control=“jj”},{"ii",”jj”,"i", "j”})

cudaize(block{“ii”}, thread{“i”})

unroll to depth(1)

Data Reuse
inside thread

Data Reuse
across
threads

Final Loop
Order

ACACES 2011, L4: Parallel code and CUDA-CHiLL

CUDA-CHiLL Recipe

N = 1024
TI= TJ = 32
tile_by_index({“i”,”j”},

{TI,TJ},{l1_control="ii”,
l2_control=“k”},{"ii",
“jj”,"i", "j”})

normalize_index(“i”)

cudaize(“mv_GPU”, {a=N,
b=N, c=N*N},{block=
{“ii”}, thread={“i”}})

copy_to_shared(“tx”, “b”, 1)
copy_to_registers(“jj”, “a”)
unroll_to_depth(1)

ACACES 2011, L4: Parallel code and CUDA-CHiLL

Final MV Generated Code: with Data staged in shared memory & registers.
__global__ GPU_MV(float* a, float* b, float** c) {
int bx = blockIdx.x; int tx = threadIdx.x;
__shared__ float bcpy[32];
float acpy = a[tx + 32 * bx];
for (jj = 0; jj < 32; jj++) {
 bcpy[tx] = b[32 * jj + tx];
 __syncthreads();
 //this loop is actually fully unrolled
 for (j = 32 * jj; j <= 32 * jj + 32; j++)
 acpy = acpy + c[j][32 * bx + tx] * bcpy [j];
 __syncthreads();
}
a[tx + 32 * bx] = acpy;
}

Generated Code: with Computational decomposition only.
__global__ GPU_MV(float* a, float* b, float** c) {
int bx = blockIdx.x; int tx = threadIdx.x;
int i = 32*bx+tx;
for (j = 0; j < N; j++)

 a[i] = a[i] + c[j][i] * b[j];
}

3a. Matrix-Vector Multiply: GPU Code

ACACES 2011, L4: Parallel code and CUDA-CHiLL

3b. TSG: 3-Phase Approach

Phase I:
Identify Candidate

Computation
Decompositions

Phase II:
For a given computation
decomposition, identify
candidates for different

memory hierarchy
levels

Phase III/IV: Code Gen
& Autotuning

Holding computation and
data partition sizes fixed

(tile parameters), determine
most profitable data

placement for each data
structure. Then, tune for tile

parameters.

ACACES 2011, L4: Parallel code and CUDA-CHiLL

This approach leads
to a small number of
implementations, in
the tens of variants.

3b. TSG: Identifying Strategies
Parallel Mapping
•  Use dependence information and global memory coalescing concept
to identify candidate parallel loops for blocks and threads.
•  Generate tiling for block and thread decomposition.
Manage Heterogeneous Memory Hierarchy
•  Register candidate: any data with reuse inside a thread.
•  Shared memory candidate: any data with reuse across threads in a
block AND any data with non-coalesced global memory accesses.
•  Texture memory candidate: any read-only data already mapped to
shared memory or registers.
•  Constant memory candidate: read-only data with reuse across
threads (and blocks) and short reuse distances.
Other Optimizations
•  Aggressive loop unrolling by default to improve ILP, increase
register reuse and reduce loop overhead.

ACACES 2011, L4: Parallel code and CUDA-CHiLL

•  Next we show the distinct
implementations our autotuning
framework identifies for the GTX-280
and Fermi

•  Achieves comparable results to best-
known previous implementations

3c. Matrix Multiply Example, Portability
to Different Architectures

ACACES 2011, L4: Parallel code and CUDA-CHiLL

3c. Comparison of Two GPUs

ACACES 2011, L4: Parallel code and CUDA-CHiLL

GTX-280 Tesla C2050
#SMs 30 14
Cores/SM 8 32
Total cores 240 448
Peak (SP) 933 GF/s 1.03 TF/s
Peak (DP) 87 GF/s 515 GF/s
Global memory 1 GB 3 GB
Bandwidth 142 GB/s 144 GB/s
Shared memory/SM 16KB (up to) 48 KB
Registers/SM 16 K 32 K
“Texture” accesses Yes Yes
Data cache 0 (up to) 48 KB

3c. Automatically-Generated Matrix-
Matrix Multiply Scripts

a in shared memory, both a and b are
read through texture memory

Different computation decomposition
leads to additional tile command

ACACES 2011, L4: Parallel code and CUDA-CHiLL

TC2050 Fermi implementation
Mostly corresponds to CUBLAS
3.2 and MAGMA

GTX-280 implementation
Mostly corresponds to CUBLAS
2.x and Volkov’s SC08 paper

3d. Another Example, MRI-Q
Source code from Parboil
benchmark

Automatically-generated script

•  Kernel from an MRI computation, part
of Parboil suite

• Our compiler identified a different
strategy that leads to higher
performance than the manually-
written code

ACACES 2011, L4: Parallel code and CUDA-CHiLL

3d. Another Example, 2D Convolution

Sequential Code
for(i=0;i<N;++i)
 for(j=0;j<N;++j)
 for(k=0;k<M;++k)

 for(l=0;l<M;++l)
 c[i][j] = c[i][j] + a[k+i][l+j] * b[k][l];

CUDA-CHiLL Recipe
N=4096, M=32, TI =32, TJ = 16, Tl=4
permute(0,{"j","i","k","l"})

tile_by_index({"j","i"}, {TI,TJ}, {l1_control="jj",
l2_control="ii"}, {"jj", "ii", "j", "i","k","l"})

normalize_index("j")
normalize_index("i")
cudaize("Kernel_GPU", {a=(N+M)*(N+M), b=M*M,

c=(N+M)*(N+M)},{block={"jj","ii"}, thread=
{"j","i"}})

copy_to_shared("tx","a",-16)
copy_to_shared("tx","b",-16)
copy_to_registers("tx", "c")
unroll_to_depth(1)

Optimized Code
__shared__ float (_P1[47])[31];
 __shared__ float (_P2[16])[17];float tmp3;
…
for (tmp = 16 * by + 3 * ty; tmp <= min(16 * by + 30, 16

* by + 3 * ty + 2); tmp++)
 for (tx1 = 2 * tx; tx1 <= min(2 * tx + 1, 46); tx1++)

 _P1[tx1][tmp - 16 * by] = a[tmp][32 * bx + tx1];
__syncthreads();
 for (tmp = 0; tmp <= 15; tmp++)

 for (tx1 = 2 * tx; tx1 <= 2 * tx + 1; tx1++)
 _P2[tx1][tmp] = b[tmp][tx1];
__syncthreads();
tmp3 = c[k + 16 * by][tx + 32 * bx];
for (k = 0; k <= 15; k++)

 for (l = 0; l <= 15; l++)
 tmp3 = tmp3 + _P1[l + tx][k + ty] * _P2[l][k];
c[k + 16 * by][tx + 32 * bx] = tmp3;

Data structures
for shared

memory

Complex bounds for
shared memory copy

loops

ACACES 2011, L4: Parallel code and CUDA-CHiLL

4. Increased Productivity of CUDA-CHiLL
Interface

CUDA-CHiLL script (in Lua):
N = 1024
TI=32
tile_by_index({“i”}, {TI},

{l1_control="ii”},{"ii", "i", "j”})
//normalize to start at “i”=0
normalize_index(“i”)
cudaize(“mv_GPU”, {a=N, b=N,

c=N*N},{block={“ii”}, thread=
{“i”}})

copy_to_shared(“tx”, “b”, 1)
copy_to_registers(“k”, “a”)
unroll_to_depth(1)

Equivalent CHiLL script
(generated by Lua interface):

NI = 1024
TI = 32
original()
tile(0, 1, TI, 1, i, ii, 1)
tile(0, 3, TI, 2, j, k, 1)
tile(0, 3, 3)
datacopy(0, 3, b,{“tmp1”,”tmp2”},
 false,0,1,1,true)
add_sync(0, "i")
add_sync(1, "i")
tile(1, 3, 3)
datacopy_privatized(0, k, a, {“i”, “j”})
unroll(0, 5, 0)

Simple example where tile size
evenly divides problem size.

ACACES 2011, L4: Parallel code and CUDA-CHiLL

4. Increased Productivity: Matrix
Multiply

ACACES 2011, L4: Parallel code and CUDA-CHiLL
CHiLL Script Source:
Gabe Rudy

ACACES 2011, L4: Parallel code and CUDA-CHiLL

5. Performance Results: Matrix-Matrix
and Matrix-Vector Multiply

5. Performance Results: Convolution and
MRI-Q

2-D Convolution

MRI-Q

GTX-280 TC2050 Fermi

ACACES 2011, L4: Parallel code and CUDA-CHiLL

•  Table shows reduction in performance when
specific level of the memory hierarchy is not
used.

5. Performance Results: Impact of
Different Memory Hierarchy Levels

ACACES 2011, L4: Parallel code and CUDA-CHiLL

Unroll Registers Shared Memory Texture Memory

Kernel GTX280 Tesla
C2050

GTX280 Tesla
C2050

GTX280 Tesla
C2050

GTX280 Tesla
C2050

DGEMM 94.85 96.55 92.32 84.86 72.17 58.71 1.38 4.77
DGEMV 57.55 5.55 63.63 68.99 27.16 0.38 0.0 3.8
DGEMV(T) 64.31 0.63 20.51 19.94 88.83 63.06 0.55 0.0
MRIQ 0.00 1.63 12.47 11.25 10.61 12.89 0.0 0.0
Conv. 44.16 47.46 77.29 54.29 89.19 23.24 5.66 0.0

•  Generated code is very long, over 1000
lines of code for some versions of Matrix-
Matrix Multiply
–  Problem size may not be evenly divided by

computation decomposition parameters
–  Cleanup code for tiling and unrolling can be

lengthy, important to optimize too
•  No more than 32 versions needed to

generalize

ACACES 2011, L4: Parallel code and CUDA-CHiLL

5. Performance Results: A Few More
Details

Summary of Lecture
•  Two ideas

–  A programming language interface to CHiLL’s
primitives allows custom higher-level abstractions

–  Used to develop CUDA-CHiLL abstractions for
auto-tuning high-performance GPU code

•  Features
–  TSG generates multiple possible implementations

that are searched using autotuning
–  Performance: can sometimes outperform CUBLAS

and manual code

ACACES 2011, L4: Parallel code and CUDA-CHiLL

Other GPU compiler frameworks.
M. Baskaran, J. Ramanujam, and P. Sadayappan, "Automatic C-to-CUDA Code Generation
for Affine Programs ," International Conference on Compiler Construction (CC), March 2010.
H. Cui, L. Wang, J. Xue, Y. Yang, X. Feng, Automatic Library Generation for BLAS3 on
GPUs, Proceedings of the IEEE International Parallel Distributed Processing Symposium,
May 2011.
T. D. Han and T. S. Abdelrahman, "hiCUDA: High-Level GPGPU Programming," IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 78-90, Jan. 2011.
S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP Programming and Tuning for
GPUs”. Proceedings of the 2010 ACM/IEEE Conference on Supercomputing, Nov. 2010.
Y. Yang, P. Xiang, J. Kong, and H. Zhou, “A GPGPU Compiler for Memory Optimization and
Parallelism Management”, Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI2010), June, 2010.
CUDA-CHiLL reference.
G. Rudy, M. Khan, M. Hall, C. Chen, and J. Chame. 2010. A programming language
interface to describe transformations and code generation. In Proceedings of the 23rd
international conference on Languages and compilers for parallel computing (LCPC'10),
Keith Cooper, John Mellor-Crummey, and Vivek Sarkar (Eds.). Springer-Verlag
Publishers, 136-150.

References

ACACES 2011, L4: Parallel code and CUDA-CHiLL

