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•  Much of our focus is making compiler 
technology accessible to users seeking 
high performance 

•  Essential goal is to demonstrate impact 
on production scientific codes 

•  Today we look at a few examples 
•  Also, role of autotuning in future tens 

of petaflops and exaflops systems 

Motivation 
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1.  Remainder of nek5000 discussion (from 
Tuesday) 

2.  Navigating large search spaces: smg2000 
- Combining CHiLL with Active Harmony  

3.  Library specialization for sparse 
computations: PFLOTRAN 

4.  Migrating applications to Exascale (and tens 
of Petaflops) 

Outline for Today’s Lecture 
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1. Autotuning of Nek5000 

•  Applications: nuclear energy, astrophysics, ocean 
modeling, combustion, bio fluids, .... 

•  Scales to P > 10,000 (Cray XT5, BG/P) 
•  > 75% of time spent on manually optimized mxm 

–  matrix multiply of very small, rectangular matrices 
–  matrix sizes remain the same for different 

problem sizes 

Spectral element code: turbulence in wire-wrapped subassemblies 
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2.2X speedup 
for DGEMM  

1. nek5000: Automatically-Generated Code is 
Faster than Manually-Tuned Libraries 

Hand-tuned(1) 
Hand-tuned(2) 
Naïve 
ATLAS 
ACML 
GOTO BLAS 
TUNE 

Target architecture: AMD Phenom, 2.5 GHz, data fits in 64 KB L1,  
4 double-precision floating point operations / cycle  10 GFlops / core peak 

ACACES 2011, L5: Autotuning High-End Applications 



(1) mxm(a, m, b, k, c, n){ 
(2)  if (all a, b and c are aligned to the SIMD register width){ 
(3)    if (k == 10){ 
(4)      if (m == 10){ 
(5)        if (n == 10){ m10_10_10(a,b,c); return;} 
(6)        if (n == 100){ m10_10_100(a,b,c); return;}} 
(7)      else if (n == 2){ 
(8)        if (m == 2){ m2_10_2(a,b,c); return;} 
(9)        if (m == 4){ m4_10_2(a,b,c); return;}} 
(10)     else if (m == 100 && n == 10){m100_10_10(a,b,c); return;} 
(11)     else if (n == 16){ 
(12)       if (m == 16){ m16_10_16(a,b,c); return;} 
(13)       if (m == 256){ m256_10_16(a,b,c); return;}} 
(14)     else if (m == 16 && n == 100){m16_10_100(a,b,c); return;}} 
(15)   else if (k == 2){ 
(16)     if (n == 10){ 
(17)       if (m == 10){ m10_2_10(a,b,c); return;} 
(18)       if (m == 100){ m100_2_10(a,b,c); return;}} 
(19)     else if (m == 10 && n == 88){m10_2_88(a,b,c); return;}} 
(20)   else if (k == 16){ 
(21)     if (m == 16){ 
(22)       if (n == 16){ m16_16_16(a,b,c); return;} 
(23)       if (n == 256){ m16_16_256(a,b,c); return;}} 
(24)     if (m == 10){ 
(25)       if (n == 10){ m10_16_10(a,b,c); return;} 
(26)       if (n == 256){ m10_16_256(a,b,c); return;}} 
(27)     else if (m == 256 && n == 16){m256_16_16(a,b,c); return;} 
(28)     else if (m == 100 && n == 10){m100_16_10(a,b,c); return;}}} 
(29) mxm44_0(a, m, b, k, c, n);} 

1. nek5000: Construct wrapper to select 
among specialized DGEMM kernels 

Slide source: Jaewook Shin,  
ICS ‘10 ACACES 2011, L5: Autotuning High-End Applications 

Wrapper calls 
ordered 
according to 
execution 
frequency to 
minimize 
overhead 



do iz=1,10  
   call mxm(A(1,1,iz),10,B,10,C(1,1,iz),10)  
enddo  

(a) original  

do iz=1,10 
    do i=1,10 
        do j=1,10 
            C(i,j,iz) = 0.0d0 
            do l=1,10 
                 C(i,j,iz) = C(i,j,iz) + A(i,l,iz)*B(l,j) 
            enddo 
        enddo 
    enddo 
enddo 

(b) inlined 

Slide source: Jaewook Shin,  
ICS ‘10 

1.nek5000: Higher-Level Kernels, Multiple Calls 
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Slide source: Jaewook Shin,  
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1. nek5000: Higher-Level Kernel Performance 



1. nek5000: (g6a input) on Jaguar 
Sp

ee
du

ps
 26 % 

ACACES 2011, L5: Autotuning High-End Applications 



1. Multiple Cores / Node: 
Nek5000 (g6a) on 32 nodes of Jaguar 

Sp
ee

du
ps
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2. Navigating Large Search Spaces 

•  Autotuning can lead to very large search spaces 
•  Overview of other tools in the performance tuning 

process 
•  Strategies in PERI for navigating large search spaces 

(Active Harmony) 
•  Heuristic search to prune search space  
•  Search multiple points in parallel 

•  Example code: SMG2000 
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2. (DOE SciDAC) PERI Autotuning Tools 

HPC Toolkit (Rice) 
ROSE (LLNL) 

CHiLL (USC/ISI and Utah) 
ROSE (LLNL) 
Orio (Argonne) { 

OSKI (LBNL) 

Active Harmony (UMD) 
GCO (UTK) 

PerfTrack (LBNL, SDSC, RENCI) 
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2. Parallel Heuristic Search:  
SMG2000 Optimization in PERI 

for si = 0 to NS-1	
  for k = 0 to NZ-1	
    for j = 0 to NY-1	
      for i = 0 to NX-1	
        r[i + j*JR + k*KR] -=	
              A[i + j*JA + k*KA + SA[si]]	
            * x[i + j*JX + k*KX + Sx[si]]	

2D 6-point Stencil 

•  Semi-coarsening multigrid on structured grids 
–  Residual computation contains sparse matrix-vector 

multiply bottleneck, expressed in 4-deep loop nest 
–  Key computation identified by HPCToolkit 
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46% of execution time 

HPCToolkit 

Restart 

Residual Residual 

Checkpt 

SMG2000 
Application 

ROSE Outliner 
Standalone 

Kernel 
BLCR 

(LBNL) 

2. SMG2000: Triage Step Identifies Key 
Computation, Isolates into Standalone Executable 
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Outlined Code (from ROSE outliner) 
for (si = 0; si < stencil_size; si++)  
    for (kk = 0; kk < hypre__mz; kk++)  
        for (jj = 0; jj < hypre__my; jj++)  
            for (ii = 0; ii < hypre__mx; ii++)  
                rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=  
                    ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+ 
                     (((A->data_indices)[i])[si])])*  
                     (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si])]));  

CHiLL Transformation Recipe  
permute([2,3,1,4]) 
tile(0,4,TI) 
tile(0,3,TJ) 
tile(0,3,TK)  
unroll(0,6,US)  
unroll(0,7,UI) 

Constraints on Search 
0 ≤ TI , TJ, TK ≤ 122  
0 ≤ UI ≤ 16  
0 ≤ US ≤ 10  
compilers ∈ {gcc, icc}  

Search space:  
1223x16x10x2 = 581M points 

2. SMG2000 Kernel has Huge Optimization 
Search Space!  

ACACES 2011, L5: Autotuning High-End Applications 



Active Harmony 

Parallel Rank Order Search 

•  Search-based collaborative approach 
–  Simultaneously explore different tunable parameters to search a 

large space defined by the user 
•  e.g., Loop blocking and unrolling factors, number  of OpenMP 

threads, data distribution algorithms, granularity controls, … 
–  Supports both online and offline tuning 
–  Central controller monitors performance, adjusts parameters 

using search algorithms, repeats until converges 
–  Can also generate code on-demand for tunable parameters that 

need new code (e.g. unroll factors) using code transformation 
frameworks (e.g. CHiLL) 

2. From Lecture 1: Application-level 
tuning using Active Harmony 

Application 

Parameters Performance 

Slide source: Ananta Tiwari ACACES 2011, L1: Autotuning and its Origins 



2. SMG2000 Workflow and Integration 
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•  All, but the best 
point of simplex 
moves 

•  Computations can 
be done in parallel 

•  N parallel 
evaluations for N+1 
point simplex 

2. Recall Active Harmony Parallel 
Rank Order Algorithm 
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Parallel Heuristic Search Converges 
Rapidly for SMG2000 

Selected parameters: 
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc 
Performance gain on residual computation: 
2.37X  
Performance gain on full app:  
27.23% improvement 

Parallel heuristic search (Active Harmony) evaluates 490 points and converges in 20 steps. 
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2. Extending to On-line Tuning 

"  On-line tuning that combines CHiLL and Active Harmony 
is described in the following recent paper: 
 "Online Adaptive Code Generation and Tuning,” Ananta Tiwari and Jeff Hollingsworth, Proceedings 
of the International Parallel and Distributed Processing Symposium (Best Paper, Software), May 
2011. 

"  CHiLL scripts are instantiated dynamically, triggering 
dynamic code generation and linking 

"  Active Harmony monitors availability of new code 
variants, identifies improved versions, and patches into 
running program when appropriate 

"  Tunes just one computation in a program at a time 

On-line tuning profitable, even though overheads are high 
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•  PFloTran models Multiscale-Multiphase-
Multicomponent Subsurface Reactive 
Flows (groundwater modeling) 

•  PETSc routines comprise 25% of 
execution time and achieve 4% of peak 
on Jaguar 
–  Example: MatSolve_SeqBAIJ_N 
–  Represents sparse matrix as collection of 

dense blocks 
–  Large number of different implementations 

specialized for different block sizes 

3. PFloTran: Optimizing PETSc Sparse 
Linear Algebra 
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Outlined Code 
#define SIZE 15 
void forward_solve_kernel( … )  { 
   …. 
   for (cntr = SIZE - 1; cntr >= 0; cntr--) { 
          x[cntr] = t + bs * (*vi ++); 
          for (j=0; j<bs; j++) 
              for (k=0; k<bs; k++) 

     s[k]-= v[cntr][bs* j+k] * x[cntr][j]; 
    } 
} 

CHiLL Transformation Recipe 
original() 
known(bs = 15) 
unroll(1,2,u1) 
unroll(1,3,u2) 

Constraints on Search 
0 <= u1 <= 16 
0 <= u2 <= 16 
compilers ∈ {gnu, pathscale, cray, pgi}  

Search space:  
17x17x4 = 1156 points 
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3. PFloTran: Optimizing Triangular 
Solve 

Slide source: Jeff Hollingsworth,  
SciDAC ‘10 



•  Data is organized into set of dense 
blocks (blocked sparse row) 

•  Zeros may be computed inside block 
•  Allows for very fast computation within 

a block (looks like a dense computation) 
at the cost of additional storage 

•  Optimization strategy similar to dense 
linear algebra for small matrices 

3. PFloTran: A Few Words on Strategy 
for Optimizing Triangular Solve 
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3. PFloTran Triangular Solve Results  
(Active Harmony + CHiLL) 

Compiler Original Active Harmony Exhaustive 

Time Time (u1,u2) Speedup Time (u1,u2) Speedup 

pathscale 0.58 0.32 (3,11) 1.81 0.30 (3,15) 1.93 

gnu 0.71 0.47 (5,13) 1.51 0.46 (5,7) 1.54 

pgi 0.90 0.53 (5,3) 1.70 0.53 (5,3) 1.70 

cray 1.13 0.70 (15,5) 1.61 0.69 (15,15) 1.63 

Slide source: Jeff Hollingsworth,  
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•  L/R picture 

4. Getting to Exascale:  
DARPA Exascale Technology Reports 

See http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECS_reports.htm 
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4. What’s Different about Exascale 
Computing 

•  Lower memory-computation ratio due to system 
cost 
–  Terascale ~ 1 byte/FLOP 
–  Petascale ~ .1 byte/FLOP 
–  Exascale ~ 0.01 bytes/FLOP (projected)  

•  Therefore, weak scaling won’t deliver 1000x 
increase in concurrency 

•  1000x must come from strong scaling and software 
improvements 
–  Reduce task granularity by 1000x 
–  Reduce synchronization granularity by 1000x 
–  Reduce communication overhead by 100x 
–  Reduce sequential bottlenecks by 1000x 
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•  Exascale architectures will be fundamentally different 
–  Power management THE fundamental issue 
–  Reliability (hardware and software) increasingly a 

concern 
–  Memory reduction to .01 bytes/flop  
–  Hierarchical, heterogeneous 

•  Basic rethinking of the software “stack” 
–  Ability to express and manage locality and parallelism for 

~billion threads will require fundamental change 
–  Support applications that are forward scalable and 

portable (over provision parallelism and map to h/w) 
–  Managing power (although managing locality is a big part) 

and resilience requirements  
Sarkar, Harrod and Snavely, “Software Challenges in Extreme Scale Systems,” SciDAC 2009, June, 2009.  Summary of 
results from a DARPA study entitled, “Exascale Software Study,” June 2008 through Feb. 2009. 

4. More on Getting to Exascale 
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Echelon System Sketch 
from “GPU Computing To Exascale and Beyond”, Bill Dally, SC10 



•  Increasingly onerous for programmer to manage mapping 
to hardware, even for single socket 

•  Many existing and future systems will include 
heterogeneous processors, requiring different mapping 
strategies  

•  At extreme scale, anticipating dynamically varying 
behavior even for “regular” computations 
•  Billions of threads 
•  Active energy and reliability management 

•  Optimization must navigate performance, energy and 
reliability goals 

Key Idea: Programming system can automate portions of 
this tuning process 

4. Getting to Exascale: Growing 
Importance of Autotuning 
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•  Autotuning applied to applications 
–  Building application-specific libraries 
–  Triage to extract key computational kernels 
–  Navigating very large search spaces 

•  Getting to exascale 
–  Many concerns beyond performance (energy and 

reliability) 
–  Heterogeneous architectures will change how we 

develop programs 
–  Autotuning even more important 

Summary of Lecture 
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Concluding Remarks 
Compiler-based collaborative auto-tuning: 
-  Close collaboration with architects and application developers 
-  Track manual tuning research and try to replicate (semi-) 

automatically 
-  Portable code generation, and start on heterogeneous support 
Three core technical ideas 

–  Compiler technology: Modular compilers, systematic 
approach to optimization, empirical search, goal is hand-
tuned performance. 

–  User Tools: Access to transformation system,  express 
parameters for automatic search, express expected problem 
size, express alternative implementations  

–  Systematic: Compose optimized applications in context.  
Express/derive parameters for search 
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