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Motivation

* Much of our focus is making compiler
technology accessible to users seeking
high performance

» Essential goal is to demonstrate impact
on production scientific codes

» Today we look at a few examples

» Also, role of autotuning in future tens
of petaflops and exaflops systems
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Outline for Today's Lecture

1. Remainder of nekb000 discussion (from
Tuesday)

2. Navigating large search spaces: smg2000
- Combining CHILL with Active Harmony

3. Library specialization for sparse
computations: PFLOTRAN

4. Migrating applications to Exascale (and tens
of Petaflops)
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1. Autotuning of Nek5000

Spectral element code: turbulence in wire-wrapped subassemblles

+ Applications: nuclear energy, as’rrothsics ocean
modeling, combustion, bio fluids, ....

» Scales to P > 10,000 (Cray XT5, BG/P)
*+ >75% of time spent on manually optimized mxm
- matrix multiply of very small, rectangular matrices

- matrix sizes remain the same for different
problem sizes
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1. nek5000: Automatically-Generated Code is
Faster than Manually-Tuned Libraries
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Matrix sizes (M*K*N)

Target architecture: AMD Phenom, 2.5 GHz, data fits in 64 KB L1,
4 double-precision floating point operations / cycle = 10 GFlops / core peak
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1. nek5000: Construct wrapper to select
among specialized DGEMM kernels

(1) mxm(a, m, b, k, ¢, n){
(2) if (all a, b and c are aligned to the SIMD register width) {

(3) if (k == 10){

(4) if (m == 10) {

(5) if (n == 10){ ml0_10_10(a,b,c); return;}

(6) if (n == 100){ m10_10 100(a,b,c); return;}}

(7) else if (n == 2){ Wr'apper' calls
(8) if (m == 2){ (a,b,c); return;}

(9) if (m == 4){ m4_10 2(a,b,c); return;}} or'der'ed

(10) else if (m == 100 && n == 10) {m100_10_10(a,b,c); return;} cj. 1.
(11) else if (n == 16) {

(12) if (m == 16){ ml6_10_16(a,b,c); return;} (1(:<:()r‘ {r1sa ()
(13) if (m == 256){ m256_10_16(a,b,c); return;}}

(14) else if (m == 16 && n == 100) {ml6_10_100(a,b,c); return;}} €3><€3<:lj1.|()r‘

(15) else if (k == 2){

(19)  else if (x = frequency to
(17) if (m == 10){ ml10_2 10(a,b,c); return;} e *

(18) if (m == 100){ ml00 2 10(a,b,c); return;}} minimize

(19) else if (m == 10 && n == 88) {ml0_2 88(a,b,c); return;}}

(20) else if (k == 16){ Over'head

(21) if (m == 16) {

(22) if (n == 16){ ml6_16_16(a,b,c); return;}

(23) if (n == 256){ ml6_16 256(a,b,c); return;}}

(24) if (m == 10) {

(25) if (n == 10){ ml0_16_10(a,b,c); return;}

(26) if (n == 256){ ml0_16_256(a,b,c); return;}}

(27) else if (m == 256 && n == 16) {m256_16_1l6(a,b,c); return;}

(28) else if (m == 100 && n == 10) {m100_16 10(a,b,c); return;}}}

(29) mxm44 O(a, m, b, k, ¢, n);}
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1.nek5000: Higher-Level Kernels, Multiple Calls

doiz=1,10
do i=1,10
do j=1,10
C(i,j,iz) = 0.0d0
doiz=1,10 do [=1,10
call mxm(A(1,1,iz),10,B,10,C(1,1,iz),10) C(i,j,iz) = C(i,j,iz) + A(i,Liz)*B(l,))
enddo enddo
enddo
(a) original enddo
enddo

(b) inlined

Slide source: Jaewook Shin, u THE
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1. nek5000: Higher-Level Kernel Performance

|I_Baseline = TUNE-mxm = TUNE-higher TUNE-higher(XT5) |

> 70

input size
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1. nek5000: (gba input) on Jaguar

—&—— Baseline Cray-Scilib — —A— - TUNE-mxm ——>¢— TUNE-higher

Speedups
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# Processors
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1. Multiple Cores / Node:
Nek5000 (g6a) on 32 nodes of Jaguar

—&— Baseline TUNE-higher

/ —

Speedups

3 —
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# Cores / Node
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2. Navigating Large Search Spaces

Autotuning can lead to very large search spaces

* Overview of other tools in the performance tuning
process

Strategies in PERI for navigating large search spaces
(Active Harmony)

Heuristic search to prune search space
» Search multiple points in parallel
Example code: SMG2000
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2. (DOE SciDAC) PERI Autotuning Tools

HPC Toolkit (Rice)
ROSE (LLNL)

CHILL (USC/ISI and Utah)
ROSE (LLNL)
Orio (Argonne)

Guidance
* measurements
» models

+ hardware information »4———

Source Code

A 4

Triage « sample input
l * annotations
+ assertions

l Analysis

N S

Transformations

|| Code Generation

Code Selection

Domain-Specific
Code Generation

External
] Software

i

k.

Application Assembly I

~ Runtime Performance Data |

Runtime

r ¥

Execution

PerfTrack (LBNL, SDSC, RENCI)

Persistent
Database
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2. Parallel Heuristic Search:

SMG2000 Optimization in PERI

Semi-coarsening multigrid on structured grids

- Residual computation contains sparse matrix-vector
multiply bottleneck, expressed in 4-deep loop nest

- Key computation identified by HPCToolkit

si 2D 6-point Stencil
k (-1, 1) (0, 1)
T
j (-1,0) —»(0,0) j
/* A3
1 (-1,-1) (0, -1)
r ['I. J k S = {(-1,1),(-1,0),(-1,-1),(0,1),(0,0),(0,-1)}
A[1 3 k SA[si]]
x[1 3 k Sx[si]]
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2. SMG2000: Triage Step Identifies Key
Computation, Isolates info Standalone Executable

HPCToolkit ROSE Outliner
I e S M G2000 Standalone

File Debug Search Help

% cyclic_reduction.c | ™% smg_residual.c &3 ‘ =0 A lic ation I< ern el
276 xp = hypre_StructVectorBoxData(x, i) + z pp
277 hypre_BoxOffsetDistance(x_data_box, stencil_shape[si]);
278
279 hypre_BoxGetStrideSize(compute_box, base_stride, BLCR
280 loop_size);
281 hypre_BoxLoop3Begin(loop_size,
282 A_data_box, start, base_stride, Ai, (LBNL)
283 x_data_box, start, base_stride, xi,
284 r_data_box, start, base_stride, ri);
285#define HYPRE_BOX_SMP_PRIVATE loopk,loopi,loopj,Ai,xi,ri \
286#include "hypre_box_smp_forloop.h"
287 hypre_BoxLoop3For(loopi, loopj, loopk, Ai, xi, ri)
% of tion ti
: 46% of execution time
291 hypre_BoxLoop3End(Ai, xi, ri);
292 }
293 } ||
294 } /
295  } -
296
297 /*
298 * Return
299 hd */ [v]
[¢] Za [*]

=L Flt View, ilC
|2 &t 3|6 mM

Scope v WALLCLK |

Experiment Aggregate Metrics .28e04 100 %

¥ Load module /home/liao/svnrepos/benchmarks/smg2000/test/smg2000
¥ smg_residual.c
~ hypre_SMGResidual

.28e04 99.9%
.22e04 58.0%

S RN

Cuou o o e

smg_residual.c: 152 8.5%

smg_residual.c: 287 04e02 1.1%

smg_residual.c: 236 12e02 1.0%
0.

smg_residual.c: 238

[«]

THE

ACACES 2011, L5: Autotuning High-End Applications UNIVERSITY
OF UTAH




2. SMG2000 Kernel has Huge Optimization
Search Spacel

Outlined Code (from ROSE outliner)
for (si = 05 si < stencil size; si++)
for (kk = 0; kk < hypre mz; kk++)
for (jj = 05 jj <hypre__my; jj++)
for (ii = 0; ii < hypre mx; ii++)
rp[((ri+ii))+(jj*hypre sy3))+(kk*hypre sz3)]| -=

((Ap_O[((ii+(jj*hypre _syl))+ (kk*hypre szl))+
(((A->data_indices)[i]D[siDD*
(xp_O[((Gi+(jj*hypre__sy2))+(kk*hypre__sz2))+(( *dxp_s)[si)]));

CHILL Transformation Recipe Constraints on Search
permute(]|2,3,1,4]) 0<TI, TJ, TK <122
tile(0,4,T1) 0<UI<16
tile(0,3,TJ) 0<US<10
tile(0,3,TK) compilers € {gcc, icc}
unroll(0,6,US)

unroll(0,7,UT) Search space:
1223x16x10x2 = 581M points
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2. From Lecture 1: Application-level

— luning using Active Harmony

» Search-based collaborative approach

- Simultaneously explore different tunable parameters to search a
large space defined by the user

» e.g., Loop blocking and unrolling factors, number of OpenMP
threads, data distribution algorithms, granularity controls, ...

- Supports both online and offline tuning

- Central controller monitors performance, adjusts parameters
using search algorithms, repeats until converges

- Can also generate code on-demand for funable parameters that

heed new code (e.g. unroll factors) using code transformation
frameworks (e.g. CHILL)

Application

Parameters Performance
Active Harmony

ACACES 2011, L1: Autotuning and its Origins Slide source: Ananta Tiwari u 8[;1 lU V”IEARl-S[ 1By
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2. SMG2000 Workflow and Integration

CHILL : Active Harmony

Original i Additional
Code Constraints U
Transformation Parameter | ser

""""""""""""""""""" Recipes T Specification
I e Automated
Polyhedra \ Projection
Construction Server
Invalid ANN-projected
Points Points
Transformation & < Parameter Configutations Search
Code Generator Kernel
\ A
Code Variants J
l Performance
' Data
Optimization Driver &

Performance Monitor

- t

Parallel System
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2. Recall Active Harmony Parallel

-+ All, but the best V. Vv,

point of simplex y =
moves v, 2 V, ° 2

Reflected

- Computations can — orgnal _ *

be done in parallel A Simplex
A ’ A
* N parallel °: o
evaluations for N+1 | = A " v y oV:
point simplex ! 7
—> -
Shrunk Simplex Eé(_panded
implex
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Parallel Heuristic Search Converges

Rapidly for SMG2000

Parallel heuristic search (Active Harmony) evaluates 490 points and converges in 20 steps.

Parallel Rank Ordering Algorithm - Search Evolution

1.5 T T T | |
1.4 — 7]
1.3 -
o
1.2 -
T% Selected parameters:
811 TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc
£ Performance gain on residual computation:
1 237X 7
Performance gain on full app:
0.9 27.23% improvement .
0.8~ ¢ i 7]
0.7 | | | 1 1 | | | |
"0 2 4 6 8 10 12 14 16 18 20

Search Steps
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2. Ex’rending to On-line Tuning

@ On-line tuning that combines CHILL and Active Harmony
is described in the following recent paper:

"Online Adaptive Code Generation and Tuning,” Ananta Tiwari and Jeff Hollingsworth, Proceedings

of the International Parallel and Distributed Processing Symposium (Best Paper, Software), May
2011.

@ CHILL scripts are instantiated dynamically, triggering
dynamic code generation and linking

@ Active Harmony monitors availability of new code
variants, identifies improved versions, and patches into
running program when appropriate

@ Tunes just one computation in a program at a time

On-line tuning profitable, even though overheads are high
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3. PFloTran: Optimizing PETSc Sparse
S W, T-1« T [+ T-1 o] o« H—

* PFloTran models Multiscale-Multiphase-
Multicomponent Subsurface Reactive
Flows (groundwater modeling)

» PETSc routines comprise 25% of
execution time and achieve 4% of peak
on Jaguar
- Example: MatSolve_SeqBAIJ_N

- Represents sparse matrix as collection of
dense blocks

- Large number of different implementations
specialized for different block sizes
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3. PFloTran: Optimizing Triangular

—_ Solve

Outlined Code CHILL Transformation Recipe
#define SIZE 15 original()
void forward_solve kernel( ...) { known(bs = 15)
for (cntr = SIZE - 1; cntr >= 0; cntr--) { unroli(1,2,ul)
x[entr] =t + bs * (*vi ++); unroll(1,3,u2)
for (j=0; j<bs; j++)
for (k=0; k<bs; k++)
s[k]-= v[cntr][bs* j+Kk] * x[cntr][j];
}
}
Constraints on Search Search space:
0<=ul <=16 17x17x4 = 1156 points
0<=u2<=16

compilers € {gnu, pathscale, cray, pgi}

Slide source: Jeff Hollingsworth, u THE
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3. PFloTran: A Few Words on Strategy

—for Optimizing Triangular Solve ______

» Data is organized into set of dense
blocks (blocked sparse row)

» Zeros may be computed inside block

+ Allows for very fast computation within
a block (looks like a dense computation)
at the cost of additional storage

+ Optimization strategy similar to dense
linear algebra for small matrices
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3. PFloTran Triangular Solve Results

(Active Harmony + CHiILL)

Compiler Original Active Harmony Exhaustive

Time Time (u1,u2) | Speedup | Time | (u1,u2) | Speedup
pathscale 0.58 0.32 (3,11) 1.81 0.30 (3,15) 1.93
gnu 0.71 0.47 (5,13) 1.51 0.46 (5,7) 1.54
pgi 0.90 0.53 (5,3) 1.70 0.53 (5,3) 1.70
cray 1.13 0.70 (15,5) 1.61 0.69 | (15,15) 1.63

Trisolve Optimization (with cray)

‘timing_cray_exhaustive’

Trisolve Optimization (with gnu) 12
2 )
‘timing_gnu_exhaustive’ 1
timing 83
14, ¢ 0:7
1} 0.6
09
0.8 k
timing 8675: 16
05 |
04 |
u2

16
> 14
=4

(s Ut

Slide source: Jeff Hollingsworth, u THE
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4. Getting to Exascale:
DARPA Exascale Technology Reports

Georgia !
o Techn

See http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECS reports.htm

Exascale Computing Study Report

Jeginning in mid-2007, DARPA/IPTO, contracting through AFRL, has sponsored a series of studics intended to understand the future course of mainstream computing technology and determine whether or not it would
llow a 1,000X increase in the computational capabilities of computing systems by the 2015 time frame. Where current technology trends were deemed incapable of achieving such increases, the study was also charged with
dentifying the major challenges and the arcas where additional targeted research could lay the groundwork for overcoming them.

[he following report of the first Exascale Computing Study has been publicly released. Reports of additional exascale computing studics will be made available here as they are also publicly released.

» ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems (September 28, 2008)
Approved for Public Release, Distribution Unlimited

The material in this document reflects the collective views, ideas, opinions and findings of the study participants only, and not those of any of the universities, corporations, or other institutions with which they are affiliated. Furthermore, the material in
this document does not reflect the official views, ideas, opinions and/or findings of DARPA, the Department of Defense, or of the United States government.

» ExaScale Computing Software Study: Software Challenges in Extreme Scale Systems (September 14, 2009)
Approved for Public Release, Distribution Unlimited

The material in this document reflects the collective views, ideas, opinions and findings of the study participants only, and not those of any of the universities, corporations, or other institutions with which they are affiliated. Furthermore, the material in
this document does not reflect the official views, ideas, opinions and/or findings of DARPA, the Department of Defense, or of the United States government.

& ; 7 " N !mﬂ/’
s e 8 FOLIATION PROCISING IOMCUES ORX
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4. What's Different about Exascale
Computing

* Lower memory-computation ratio due to system
cost

- Terascale ~ 1 byte/FLOP
- Petascale ~ .1 byte/FLOP
- Exascale ~ 0.01 bytes/FLOP (pr'ojec’red)

* Therefore, weak scaling won't deliver 1000x
increase in concurrency

»+ 1000x must come from strong scaling and software
iImprovements
- Reduce task granularity by 1000x
- Reduce synchronization granularity by 1000x
- Reduce communication overhead by 100x
- Reduce sequential bottlenecks by 1000x
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4. More on Getting to Exascale

» Exascale architectures will be fundamentally different
- Power management THE fundamental issue
- Reliability (hardware and software) increasingly a
concern
- Memory reduction to .01 bytes/flop
- Hierarchical, heterogeneous
* Basic rethinking of the software "stack”
- Ability to express and manage locality and parallelism for
~billion threads will require fundamental change

- Support applications that are forward scalable and
portable (over provision parallelism and map to h/w)

- Managing power (although managing locality is a big part)
and resilience requirements

Sarkar, Harrod and Snavely, “Software Challenges in Extreme Scale Systems,” SciDAC 2009, June, 2009. Summary of
results from a DARPA study entitled, “Exascale Software Study,” June 2008 through Feb. 2009. u THE
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Echelon System Sketch
from “"GPU Computing To Exascale and Beyond”, Bill Dally, SC10

Dragonfly Interconnect (optical fiber)

High-Radix Router Module (RM)

Self-Aware
0S

Self-Aware
Runtime

Processor Chip (PC)

Node 0 (NO) 20TF, 1.6TB/s, 256GB
\ Module 0 (M)) 160TF, 12 .8TB/s, 2TB
\_Cabinet 0 (C0) 2.6PF, 205TB/s, 32TB
Echelon System

Locality-Aware
Compiler &
Autotuner




4. Getting to Exascale: Growing
Importance of Autotuning

 Increasingly onerous for programmer to manage mapping
to hardware, even for single socket

* Many existing and future systems will include
heterogeneous processors, requiring different mapping
strategies

« At extreme scale, anticipating dynamically varying
behavior even for “regular” computations

» Billions of threads
« Active energy and reliability management

« Optimization must navigate performance, energy and
reliability goals

Key Idea: Programming system can automate portions of
this tuning process
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Summary of Lecture

» Autotuning applied to applications
- Building application-specific libraries
- Triage to extract key computational kernels
- Navigating very large search spaces

+ Getting to exascale

- Many concerns beyond performance (energy and
reliability)

- Heterogeneous architectures will change how we
develop programs

- Autotuning even more important
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Concluding Remarks

Compiler-based collaborative auto-tuning:
- Close collaboration with architects and application developers

- Track manual tuning research and try to replicate (semi-)
automatically

- Portable code generation, and start on heterogeneous support

Three core technical ideas

- Compiler technology: Modular compilers, systematic
approach to optimization, empirical search, goal is hand-
tuned performance.

- User Tools: Access to transformation system, express
parameters for automatic search, express expected problem
size, express alternative umplemen’rahons

- Systematic: Compose optimized applications in context.
Express/derive parameters for search
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ACACES 2011, L5: Autotuning High-End Applications u lCJ)[F\'] {_}/'IEARI-SllTY



References

Papers related to these experiments

D. H. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J. K. Hollingsworth, P. Hovland, S. Moore,
K. Seymour, J. Shin, A. Tiwari, S. Williams, H. You, “PERI Auto-Tuning,” Journal of Physics:
Conference Series, Vol. 125, 2008.

J. Chame, C. Chen, M. Hall, J. K. Hollingsworth3, Kumar Mahinthakumar?, Gabriel Marin®, Shreyas
Ramalingam?, Sarat Sreepathi4, Vamsi Sreepathi, Ananta Tiwari “PERI Autotuning of PFLOTRAN”,
Journal of Physics: Conference Series, 2011 (to appear).

M.W. Hall and J. Chame, “Languages and Compilers for Autotuning,” In Performance Tuning of
Scientific Applications, edited by David Bailey, Robert F. Lucas and Sam Williams. Taylor and
Francis publishers, Nov. 2010.

J. Shin, M. W. Hall, J. Chame, C. Chen, P. F. Fischer, and P. D. Hovland. 2010. Speeding up
Nek5000 with autotuning and specialization. In Proceedings of the 24th ACM International
Conference on Supercomputing (ICS '10).

A. Tiwari, C. Chen, C. Liao, J. Chame, J. Hollingsworth, M. Hall and D. Quinlan, “Auto-tuning Full
Applications: A Case Study”, International Journal of High Performance Computing Applications,
2011 (to appear).

THE
ACACES 2011, L5: Autotuning High-End Applications u UNIVERSITY
OF UTAH



