
Mary Hall
July, 2011

Compiler-Based Autotuning Technology

Lecture 5: Autotuning High-End Applications

* This work has been partially sponsored by DOE SciDAC as part of the Performance
Engineering Research Institute (PERI), DOE Office of Science, the National Science
Foundation, DARPA and Intel Corporation.

•  Much of our focus is making compiler
technology accessible to users seeking
high performance

•  Essential goal is to demonstrate impact
on production scientific codes

•  Today we look at a few examples
•  Also, role of autotuning in future tens

of petaflops and exaflops systems

Motivation

ACACES 2011, L5: Autotuning High-End Applications

1.  Remainder of nek5000 discussion (from
Tuesday)

2.  Navigating large search spaces: smg2000
- Combining CHiLL with Active Harmony

3.  Library specialization for sparse
computations: PFLOTRAN

4.  Migrating applications to Exascale (and tens
of Petaflops)

Outline for Today’s Lecture

ACACES 2011, L5: Autotuning High-End Applications

1. Autotuning of Nek5000

•  Applications: nuclear energy, astrophysics, ocean
modeling, combustion, bio fluids,

•  Scales to P > 10,000 (Cray XT5, BG/P)
•  > 75% of time spent on manually optimized mxm

–  matrix multiply of very small, rectangular matrices
–  matrix sizes remain the same for different

problem sizes

Spectral element code: turbulence in wire-wrapped subassemblies

ACACES 2011, L5: Autotuning High-End Applications

2.2X speedup
for DGEMM

1. nek5000: Automatically-Generated Code is
Faster than Manually-Tuned Libraries

Hand-tuned(1)
Hand-tuned(2)
Naïve
ATLAS
ACML
GOTO BLAS
TUNE

Target architecture: AMD Phenom, 2.5 GHz, data fits in 64 KB L1,
4 double-precision floating point operations / cycle  10 GFlops / core peak

ACACES 2011, L5: Autotuning High-End Applications

(1) mxm(a, m, b, k, c, n){
(2) if (all a, b and c are aligned to the SIMD register width){
(3) if (k == 10){
(4) if (m == 10){
(5) if (n == 10){ m10_10_10(a,b,c); return;}
(6) if (n == 100){ m10_10_100(a,b,c); return;}}
(7) else if (n == 2){
(8) if (m == 2){ m2_10_2(a,b,c); return;}
(9) if (m == 4){ m4_10_2(a,b,c); return;}}
(10) else if (m == 100 && n == 10){m100_10_10(a,b,c); return;}
(11) else if (n == 16){
(12) if (m == 16){ m16_10_16(a,b,c); return;}
(13) if (m == 256){ m256_10_16(a,b,c); return;}}
(14) else if (m == 16 && n == 100){m16_10_100(a,b,c); return;}}
(15) else if (k == 2){
(16) if (n == 10){
(17) if (m == 10){ m10_2_10(a,b,c); return;}
(18) if (m == 100){ m100_2_10(a,b,c); return;}}
(19) else if (m == 10 && n == 88){m10_2_88(a,b,c); return;}}
(20) else if (k == 16){
(21) if (m == 16){
(22) if (n == 16){ m16_16_16(a,b,c); return;}
(23) if (n == 256){ m16_16_256(a,b,c); return;}}
(24) if (m == 10){
(25) if (n == 10){ m10_16_10(a,b,c); return;}
(26) if (n == 256){ m10_16_256(a,b,c); return;}}
(27) else if (m == 256 && n == 16){m256_16_16(a,b,c); return;}
(28) else if (m == 100 && n == 10){m100_16_10(a,b,c); return;}}}
(29) mxm44_0(a, m, b, k, c, n);}

1. nek5000: Construct wrapper to select
among specialized DGEMM kernels

Slide source: Jaewook Shin,
ICS ‘10 ACACES 2011, L5: Autotuning High-End Applications

Wrapper calls
ordered
according to
execution
frequency to
minimize
overhead

do iz=1,10
 call mxm(A(1,1,iz),10,B,10,C(1,1,iz),10)
enddo

(a) original

do iz=1,10
 do i=1,10
 do j=1,10
 C(i,j,iz) = 0.0d0
 do l=1,10
 C(i,j,iz) = C(i,j,iz) + A(i,l,iz)*B(l,j)
 enddo
 enddo
 enddo
enddo

(b) inlined

Slide source: Jaewook Shin,
ICS ‘10

1.nek5000: Higher-Level Kernels, Multiple Calls

ACACES 2011, L5: Autotuning High-End Applications

Slide source: Jaewook Shin,
ICS ‘10 ACACES 2011, L5: Autotuning High-End Applications

1. nek5000: Higher-Level Kernel Performance

1. nek5000: (g6a input) on Jaguar
Sp

ee
du

ps
 26 %

ACACES 2011, L5: Autotuning High-End Applications

1. Multiple Cores / Node:
Nek5000 (g6a) on 32 nodes of Jaguar

Sp
ee

du
ps

ACACES 2011, L5: Autotuning High-End Applications

2. Navigating Large Search Spaces

•  Autotuning can lead to very large search spaces
•  Overview of other tools in the performance tuning

process
•  Strategies in PERI for navigating large search spaces

(Active Harmony)
•  Heuristic search to prune search space
•  Search multiple points in parallel

•  Example code: SMG2000

ACACES 2011, L5: Autotuning High-End Applications

2. (DOE SciDAC) PERI Autotuning Tools

HPC Toolkit (Rice)
ROSE (LLNL)

CHiLL (USC/ISI and Utah)
ROSE (LLNL)
Orio (Argonne) {

OSKI (LBNL)

Active Harmony (UMD)
GCO (UTK)

PerfTrack (LBNL, SDSC, RENCI)

ACACES 2011, L5: Autotuning High-End Applications

2. Parallel Heuristic Search:
SMG2000 Optimization in PERI

for si = 0 to NS-1	
 for k = 0 to NZ-1	
 for j = 0 to NY-1	
 for i = 0 to NX-1	
 r[i + j*JR + k*KR] -=	
 A[i + j*JA + k*KA + SA[si]]	
 * x[i + j*JX + k*KX + Sx[si]]	

2D 6-point Stencil

•  Semi-coarsening multigrid on structured grids
–  Residual computation contains sparse matrix-vector

multiply bottleneck, expressed in 4-deep loop nest
–  Key computation identified by HPCToolkit

ACACES 2011, L5: Autotuning High-End Applications

46% of execution time

HPCToolkit

Restart

Residual Residual

Checkpt

SMG2000
Application

ROSE Outliner
Standalone

Kernel
BLCR

(LBNL)

2. SMG2000: Triage Step Identifies Key
Computation, Isolates into Standalone Executable

ACACES 2011, L5: Autotuning High-End Applications

Outlined Code (from ROSE outliner)
for (si = 0; si < stencil_size; si++)
 for (kk = 0; kk < hypre__mz; kk++)
 for (jj = 0; jj < hypre__my; jj++)
 for (ii = 0; ii < hypre__mx; ii++)
 rp[((ri+ii)+(jj*hypre__sy3))+(kk*hypre__sz3)] -=
 ((Ap_0[((ii+(jj*hypre__sy1))+ (kk*hypre__sz1))+
 (((A->data_indices)[i])[si])])*
 (xp_0[((ii+(jj*hypre__sy2))+(kk*hypre__sz2))+((*dxp_s)[si])]));

CHiLL Transformation Recipe
permute([2,3,1,4])
tile(0,4,TI)
tile(0,3,TJ)
tile(0,3,TK)
unroll(0,6,US)
unroll(0,7,UI)

Constraints on Search
0 ≤ TI , TJ, TK ≤ 122
0 ≤ UI ≤ 16
0 ≤ US ≤ 10
compilers ∈ {gcc, icc}

Search space:
1223x16x10x2 = 581M points

2. SMG2000 Kernel has Huge Optimization
Search Space!

ACACES 2011, L5: Autotuning High-End Applications

Active Harmony

Parallel Rank Order Search

•  Search-based collaborative approach
–  Simultaneously explore different tunable parameters to search a

large space defined by the user
•  e.g., Loop blocking and unrolling factors, number of OpenMP

threads, data distribution algorithms, granularity controls, …
–  Supports both online and offline tuning
–  Central controller monitors performance, adjusts parameters

using search algorithms, repeats until converges
–  Can also generate code on-demand for tunable parameters that

need new code (e.g. unroll factors) using code transformation
frameworks (e.g. CHiLL)

2. From Lecture 1: Application-level
tuning using Active Harmony

Application

Parameters Performance

Slide source: Ananta Tiwari ACACES 2011, L1: Autotuning and its Origins

2. SMG2000 Workflow and Integration

ACACES 2011, L5: Autotuning High-End Applications Slide source: Ananta Tiwari

•  All, but the best
point of simplex
moves

•  Computations can
be done in parallel

•  N parallel
evaluations for N+1
point simplex

2. Recall Active Harmony Parallel
Rank Order Algorithm

Slide source: Ananta Tiwari ACACES 2011, L5: Autotuning High-End Applications

Parallel Heuristic Search Converges
Rapidly for SMG2000

Selected parameters:
TI=122,TJ=106,TK=56,UI=8,US=3,Comp=gcc
Performance gain on residual computation:
2.37X
Performance gain on full app:
27.23% improvement

Parallel heuristic search (Active Harmony) evaluates 490 points and converges in 20 steps.

ACACES 2011, L5: Autotuning High-End Applications Slide source: Ananta Tiwari

2. Extending to On-line Tuning

"  On-line tuning that combines CHiLL and Active Harmony
is described in the following recent paper:
 "Online Adaptive Code Generation and Tuning,” Ananta Tiwari and Jeff Hollingsworth, Proceedings
of the International Parallel and Distributed Processing Symposium (Best Paper, Software), May
2011.

"  CHiLL scripts are instantiated dynamically, triggering
dynamic code generation and linking

"  Active Harmony monitors availability of new code
variants, identifies improved versions, and patches into
running program when appropriate

"  Tunes just one computation in a program at a time

On-line tuning profitable, even though overheads are high

ACACES 2011, L5: Autotuning High-End Applications

•  PFloTran models Multiscale-Multiphase-
Multicomponent Subsurface Reactive
Flows (groundwater modeling)

•  PETSc routines comprise 25% of
execution time and achieve 4% of peak
on Jaguar
–  Example: MatSolve_SeqBAIJ_N
–  Represents sparse matrix as collection of

dense blocks
–  Large number of different implementations

specialized for different block sizes

3. PFloTran: Optimizing PETSc Sparse
Linear Algebra

ACACES 2011, L5: Autotuning High-End Applications

Outlined Code
#define SIZE 15
void forward_solve_kernel(…) {
 ….
 for (cntr = SIZE - 1; cntr >= 0; cntr--) {
 x[cntr] = t + bs * (*vi ++);
 for (j=0; j<bs; j++)
 for (k=0; k<bs; k++)

 s[k]-= v[cntr][bs* j+k] * x[cntr][j];
 }
}

CHiLL Transformation Recipe
original()
known(bs = 15)
unroll(1,2,u1)
unroll(1,3,u2)

Constraints on Search
0 <= u1 <= 16
0 <= u2 <= 16
compilers ∈ {gnu, pathscale, cray, pgi}

Search space:
17x17x4 = 1156 points

ACACES 2011, L5: Autotuning High-End Applications

3. PFloTran: Optimizing Triangular
Solve

Slide source: Jeff Hollingsworth,
SciDAC ‘10

•  Data is organized into set of dense
blocks (blocked sparse row)

•  Zeros may be computed inside block
•  Allows for very fast computation within

a block (looks like a dense computation)
at the cost of additional storage

•  Optimization strategy similar to dense
linear algebra for small matrices

3. PFloTran: A Few Words on Strategy
for Optimizing Triangular Solve

ACACES 2011, L5: Autotuning High-End Applications

3. PFloTran Triangular Solve Results
(Active Harmony + CHiLL)

Compiler Original Active Harmony Exhaustive

Time Time (u1,u2) Speedup Time (u1,u2) Speedup

pathscale 0.58 0.32 (3,11) 1.81 0.30 (3,15) 1.93

gnu 0.71 0.47 (5,13) 1.51 0.46 (5,7) 1.54

pgi 0.90 0.53 (5,3) 1.70 0.53 (5,3) 1.70

cray 1.13 0.70 (15,5) 1.61 0.69 (15,15) 1.63

Slide source: Jeff Hollingsworth,
SciDAC ‘10 ACACES 2011, L5: Autotuning High-End Applications

•  L/R picture

4. Getting to Exascale:
DARPA Exascale Technology Reports

See http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECS_reports.htm

ACACES 2011, L5: Autotuning High-End Applications

4. What’s Different about Exascale
Computing

•  Lower memory-computation ratio due to system
cost
–  Terascale ~ 1 byte/FLOP
–  Petascale ~ .1 byte/FLOP
–  Exascale ~ 0.01 bytes/FLOP (projected)

•  Therefore, weak scaling won’t deliver 1000x
increase in concurrency

•  1000x must come from strong scaling and software
improvements
–  Reduce task granularity by 1000x
–  Reduce synchronization granularity by 1000x
–  Reduce communication overhead by 100x
–  Reduce sequential bottlenecks by 1000x

ACACES 2011, L5: Autotuning High-End Applications

•  Exascale architectures will be fundamentally different
–  Power management THE fundamental issue
–  Reliability (hardware and software) increasingly a

concern
–  Memory reduction to .01 bytes/flop
–  Hierarchical, heterogeneous

•  Basic rethinking of the software “stack”
–  Ability to express and manage locality and parallelism for

~billion threads will require fundamental change
–  Support applications that are forward scalable and

portable (over provision parallelism and map to h/w)
–  Managing power (although managing locality is a big part)

and resilience requirements
Sarkar, Harrod and Snavely, “Software Challenges in Extreme Scale Systems,” SciDAC 2009, June, 2009. Summary of
results from a DARPA study entitled, “Exascale Software Study,” June 2008 through Feb. 2009.

4. More on Getting to Exascale

ACACES 2011, L5: Autotuning High-End Applications

Echelon System Sketch
from “GPU Computing To Exascale and Beyond”, Bill Dally, SC10

•  Increasingly onerous for programmer to manage mapping
to hardware, even for single socket

•  Many existing and future systems will include
heterogeneous processors, requiring different mapping
strategies

•  At extreme scale, anticipating dynamically varying
behavior even for “regular” computations
•  Billions of threads
•  Active energy and reliability management

•  Optimization must navigate performance, energy and
reliability goals

Key Idea: Programming system can automate portions of
this tuning process

4. Getting to Exascale: Growing
Importance of Autotuning

ACACES 2011, L5: Autotuning High-End Applications

•  Autotuning applied to applications
–  Building application-specific libraries
–  Triage to extract key computational kernels
–  Navigating very large search spaces

•  Getting to exascale
–  Many concerns beyond performance (energy and

reliability)
–  Heterogeneous architectures will change how we

develop programs
–  Autotuning even more important

Summary of Lecture

ACACES 2011, L5: Autotuning High-End Applications

Concluding Remarks
Compiler-based collaborative auto-tuning:
-  Close collaboration with architects and application developers
-  Track manual tuning research and try to replicate (semi-)

automatically
-  Portable code generation, and start on heterogeneous support
Three core technical ideas

–  Compiler technology: Modular compilers, systematic
approach to optimization, empirical search, goal is hand-
tuned performance.

–  User Tools: Access to transformation system, express
parameters for automatic search, express expected problem
size, express alternative implementations

–  Systematic: Compose optimized applications in context.
Express/derive parameters for search

ACACES 2011, L5: Autotuning High-End Applications

Papers related to these experiments
D. H. Bailey, J. Chame, C. Chen, J. Dongarra, M. Hall, J. K. Hollingsworth, P. Hovland, S. Moore,
K. Seymour, J. Shin, A. Tiwari, S. Williams, H. You, “PERI Auto-Tuning,’’ Journal of Physics:
Conference Series, Vol. 125, 2008.
J. Chame, C. Chen, M. Hall, J. K. Hollingsworth3, Kumar Mahinthakumar4, Gabriel Marin5, Shreyas
Ramalingam2, Sarat Sreepathi4, Vamsi Sreepathi, Ananta Tiwari, “PERI Autotuning of PFLOTRAN”,
Journal of Physics: Conference Series, 2011 (to appear).
M.W. Hall and J. Chame, “Languages and Compilers for Autotuning,” In Performance Tuning of
Scientific Applications, edited by David Bailey, Robert F. Lucas and Sam Williams. Taylor and
Francis publishers, Nov. 2010.
J. Shin, M. W. Hall, J. Chame, C. Chen, P. F. Fischer, and P. D. Hovland. 2010. Speeding up
Nek5000 with autotuning and specialization. In Proceedings of the 24th ACM International
Conference on Supercomputing (ICS '10).
A. Tiwari, C. Chen, C. Liao, J. Chame, J. Hollingsworth, M. Hall and D. Quinlan, “Auto-tuning Full
Applications: A Case Study'’, International Journal of High Performance Computing Applications,
2011 (to appear).

References

ACACES 2011, L5: Autotuning High-End Applications

